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Abstract: In the first part of my talk, I review background 
leading up to the early DS inference methods of the 1960s, 
stressing their origins in R. A, Fisher’s “fiducial argument”. 
In the second part, I survey present attitudes, describing DS 
outputs as triples (p, q, r) of personal probabilities, where p 
is probability for the truth of an assertion, q is probability 
against, and r is a new probability of “don’t know”. I 
describe DS analysis in terms of independent probability 
components defined on margins of a state space model, to 
which computational operations of projection and 
combination are applied. I illustrate with a DS treatment of 
standard nonparametric inference, and an extension that 
“weakens” to gain protection against overly optimistic 
betting rules. Finally, I suggest that DS is an appropriate 
framework for the analysis of complex systems.



Circa 1950, I was an undergraduate studying 
mainly mathematics, and some physics, in a 
strong program at the University of Toronto. 
Circa 1955, I was a PhD student in the 
Princeton Mathematics Department, having 
decided to go and study mathematical statistics 
with Sam Wilks and John Tukey. It was a good 
program, blending British applied 
mathematical emphasis with the more abstract 
Berkeley-based mathematical emphasis on 
what Jerzy Neyman called inductive behavior, 
all together with American pragmatism 
concerning applications.



Circa 1960, I found myself in the young Harvard 
Statistics Department that had been founded by 
Fred Mosteller. Through teaching mainly PhD 
students, I started to really learn and understand 
the field, with specific interests mainly in 
multivariate sampling theory and theories of 
statistical inference. I started out knowing 
probability from the side of mathematical 
probability, and statistics mainly from the 
standpoint of the Berkeley-Columbia-Stanford 
frequentist school. I was exposed to many 
applications especially in a wide range of social 
and biomedical sciences, and was familiar with 
the nascent Bayesian group at the Harvard 
Business School.



I then started reading and reflecting on the long history of 
probabilistic inference, from its 17th Century beginnings, 
through Bernoulli and Laplace, and most especially, up to 
and including R. A. Fisher. Fisher was near the end of a 
remarkable career that kick-started 20th Century statistics 
into becoming the profession and academic discipline it is 
today, first by deriving many basic sampling distributions, 
and then by introducing and naming basic inferential 
concepts, including notions and theory related to 
parameter estimation and to significance testing. Many of 
his new technical concepts, among them sufficiency, 
likelihood, and efficiency, remain basic. His concept of 
randomized experimentation remains a “gold standard” in 
many areas of empirical research. All in all, it was an 
exciting time to be entering the field. 



The active debates in the 1950s lay in the friction 
between the Neymanian “frequentists”, and the 
reawakened “Bayesians” represented by L. J. 
“Jimmie” Savage (USA) and Dennis Lindley (UK), 
and also by Howard Raiffa and colleagues at the 
Harvard Business School. Fisher was out of the loop, 
generally viewed as part of history, regarded as a 
genius, but often wrong. In the profession, 
surprisingly little has changed. Fisher died while 
visiting Adelaide in 1962, before I ever encountered 
him personally, but I was fortunate to attend an 
obscure lecture by him in a crowded hall at Columbia 
University, while he was passing through on his way 
to Australia.



I found Fisher intriguing, because he rejected both of the 
popular movements, and because I resonated to his 
reasoning. He believed, as I do, that the primary role of 
mathematics is to support science, in his case by providing 
tools for valid reasoning about specific uncertainties due 
to sampling error and to observational noise. Thus 
although he was the source of many applications of 
sampling distributions, he rejected the Jerzy Neyman’s 
emphasis on long run properties of procedures, seeing 
these to be removed from immediate practical needs of 
scientific inference, and overly mathematical. By 1960 he 
had few friends in the mathematical statistics community.



Through much of his career Fisher criticized the use of 
“inverse probability”, as the Bayesian scheme was called 
a century ago. Since he gave the impression that his 
science was meant to be objective, entirely divorced from 
subjective elements, and because he worked almost 
entirely with sampling distributions, he has been 
regarded by frequentist statisticians as a founding father 
of their theory, despite his strong objections to their 
central idea. Toward the end of his life, he seems to have 
mellowed somewhat toward Bayesian ideas, but not to 
my knowledge toward Neyman and what he regarded as 
the frequentist corruption of statistical science. 



I recount all this because in 1930 Fisher introduced, 
through the example of how to assess the correlation 
coefficient of a Gaussian bivariate population, what he 
called “fiducial” inference, which is a direct antecedent 
of DS inference. Despite severe criticism, he continued 
to  provide new illustrations, and he held fast for the 
remainder of his life to claims that fiducial probabilities 
are valid, specifically, that fiducial posterior 
probabilities can, with caveats and restrictions, be 
obtained without the use of Bayesian prior 
distributions. This is also the claim of DS models and 
analyses, which, although not in full agreement with 
Fisher’s ideas, have much in common with fiducial.



Logical difficulties and controversies over fiducial 
inference could be topics for several lectures. 
Bayesians complained about violations of what 
they called “coherence”. Frequentists maintained 
that Fisher had made a simple mistake and refused 
to own up to it. Fiducial examples were 
condemned as fundamentally nonunique. An 
opposite sin of omission, recognized by Fisher 
himself , was that the fiducial paradigm could not 
handle discrete observables, even when sample 
data are simple dichotomies, as had been analyzed 
already in the 18th Century by Bernoulli and 
Bayes, using their innovative treatments based on 
sampling distributions, and conditional posterior 
distributions, respectively.



Circa 1960, I started to ponder how fiducial reasoning 
might be extended to the classical example of sampling 
a dichotomous population. Results of this thinking 
appeared in three basic papers in 1966, 1967, and 1968, 
the first two in the Annals of Mathematical Statistics, 
and the third a discussion paper in the Journal of the 
Royal Statistical Society Series B. The first of these laid 
out the earliest instance of what I now call a DS model 
and analysis, the goal being the same as that addressed 
by Bernoulli and Bayes, and with a proposed extension 
from sampling a dichotomy to sampling a polytomy 
with any number of categories. The second paper laid 
out the abstract framework of DS inference as I still 
understand it, and as it is explained in more detail in 
Glenn Shafer’s pathbreaking 1976 monograph.



The third paper explained how Bayesian models 
and analyses are special type of DS models and 
analyses, requiring the strong assumption of a 
joint prior pdf of all the variables in the model. 
When the simple DS model of my 1966 paper is 
applied without a Bayesian prior distribution, 
the need for upper and lower posterior 
probability inferences pops up. These were not 
available to Fisher, whence his inability to 
include discrete data in his fiducial canon.  In 
effect, weakened Bayesian assumptions led to 
weakened inferences, now recognizable as all 
within the DS framework. 



I wrote several other related papers in the 60s, and 
supervised several Harvard PhD theses by students, all 
of whom went on to successful careers that made no 
formal use of DS ideas. The 1960s were inauspicious 
for DS, in part because the DS examples developed in 
those years referred to situations already served 
reasonably well by older methodologies, and in part 
because computations required by proposed DS 
methods were much more intensive than those required 
by Bayesian methods, which themselves surpassed the 
capabilities of 1960s computers. Both of these factors 
have now greatly changed. Models currently under 
development do address issues not amenable to 
Bayesian treatment, and the computing scene is vastly 
different.



In the remainder of this talk, I make no attempt to 
review developments from 1970 to 2000. Instead, I 
jump ahead to describe a current view DS inference, 
and assess prospects for DS becoming well 
established on the main stage of contemporary 
statistical sciences. These prospects depend on more 
than laying out the formal mathematics of the DS 
system. First, the mathematics needs to be 
accompanied by a sense of how DS can usefully add 
capabilities to everyday uncertainty assessment by 
working professionals and decision-makers.  There 
also need to be convincing illustrations of these 
capabilities, both simple and complex.



Fundamental to establishing DS methodology as a player in 
real world uncertainty assessment is the notion of personal 
probability. There is a hurdle here for my statistical 
colleagues, because teaching in the statistical professions 
has mainly assumed that probability models are primarily 
idealized mathematical representations of randomness. 
Does probability connote personal assessment of 
uncertainty, or does it merely convey a property of objective 
randomness? I maintain that from its earliest origins much 
of the intuition and motivation behind the mathematics of 
probability includes the former. Opposition to the 
personalist viewpoint has been strong, however, especially 
from mathematical theorists.



Bruno de Finetti famously remarked that probabilities 
do not exist. Perhaps he might equally have remarked 
that randomness does not exist. Randomness is 
largely an illusion covering the inability of human 
analysts to understand and represent highly complex 
systems that underlie even the simplest of 
phenomena. Personal probabilities demonstrably do 
exist, however, because DS and Bayesian analyses 
produce them following well-defined rules of 
procedure, and real world analysts use them to guide 
choices. Surely a well-rounded view of science 
requires accepting inputs both from objective real 
world sources together with informed subjective 
judgment. Exclusion of one or the other is an 
untenable position.



There is a serious distinction behind the decision by Jimmie 
Savage circa 1960 to stop using the term subjective 
probability in favor of personal probability. Use of the latter 
is not just a matter of substituting less controversial 
language for the same troublesome concept. A personalist, 
as I understand the term, is quite comfortable with 
obtaining personal probabilities from objective real world 
sources, such as a large sample relative frequency. There is, 
moreover, more than just an observed frequency involved, 
beginning with the necessity of a personal judgment of 
equal weights among the units being counted, and often 
continuing with the application of personally selected 
statistical analyses. The situation is thus asymmetric 
between the two attitudes. The personalist approach is 
inclusive, while objectivists try to exclude personalism.



With these issues out of the way, at least for now, we can 
proceed to defining and illustrating the DS system. There 
are two distinct parts to a DS model, that I will refer to as 
the state space model (SSM) and DS probability models 
(DSPMs). It is fundamental that these constructions rest 
on logically distinct efforts.  Each draws on a different 
kind of understanding of the situation under analysis. 
Both are nontrivial in actual practice. I am moved to issue 
these warnings, because a paper in mathematical statistics 
typically begins by stating something like “ X1, X2, … , 
Xn  are independently and identically distributed random 
variables”  with such and such a parametric, or semi-
parametric, or nonparametric stochastic model. The 
presentation is so stylized as to trivialize the science 
involved in getting to that point, let alone understanding 
how the mathematics relates to any actual uncertainties. 



Recently I have been suggesting that for DS analyses in 
practice, terms like random, or stochastic, or aleatory, 
should be replaced by “pepr”, standing for “personal 
probability”, so that for example “random variable” 
becomes “pepr variable”. For many decades, the lingua 
franca of mathematical discussions of probability has used 
terms like “random variable” and “stochastic process”. 
Such language encourages users of the theory to think in 
terms of a world “governed” or “generated” by a type of 
phenomenon that is random. No doubt this is illuminating. 
It is also a mental construct. It is not inconsistent with the 
broader mental construct of personal probability. Hence my 
proposed use of “pepr” to cover the broader interpretation.



I am getting ahead of myself, however, because pepr is a 
concept entering only at the stage of model construction 
that brings in DSPMs. Variables like X1, X2, … , Xn arise 
first in specifying the SSM. For example, I might identify 
X1, X2, … , Xn  as the logarithms of 2009 gross household 
incomes in USD of a defined sample of American 
families, where the sample is a subset of a defined 
population whose effectively infinite size can be 
represented by a continuous cdf F(x). Notice that no 
mention of probability, pepr or otherwise, is as yet 
present. Having the SSM, however, you can ask the basic 
question confronting the statistician, “What can be 
inferred about the unknown F(x) given known values of 
X1, X2, … , Xn?”



After an SSM has been defined, both mathematically as a system 
of variables, and in context as representing possible states of a 
defined real world system, then, and only then, may the analyst 
move on to specifying uncertain knowledge about the actual 
state. This is accomplished by defining a collection of 
independent DSPMs over the SSM. A DSPM is specified 
mathematically using a pepr distribution called a mass 
distribution over a partition of the SSM. Such a mass distribution 
is understood to represent evidence, generally uncertain or 
incomplete evidence, about where in the SSM of possible states 
the true state lies. Independence among members of a collection 
DSPMs is understood to mean noninterference among the 
evidential sources, in the sense that accepting the assessment 
from one DSPM does not alter the assessment from the others. 



The meaning of DSPMs is illustrated through building on the 
example where the SSM consists of a sample X1, X2, … , Xn 
together with a continuous F(x). Since functions of the 
variables defining the SSM are also part of the SSM, due to 
having possible states and an unknown true state, we can 
define further variables U1, U2, … , Un where Ui = F(Xi) for i 
= 1, 2, … , n. The basic building block of the DS version of 
nonparametric statistics is defined by creating a vector of 
independent and identically distributed uniform pepr 
variables u1, u2, … , un, and defining a DSPM by assigning 
the mass distribution of u1, u2, … , un to the state space 
variables U1, U2, … , Un. This assumption was in effect first 
set out by Fisher in a 1939 obituary for W. S. Gosset 
(“Student”) , and eventually became the basis of a large 
literature on nonparametric statistics.



Along with the basic DSPM of uniform pepr variables, n 
further DSPMs are determined by observations x1, x2, 
… , xn on the SSM variables X1, X2, … , Xn. These n 
DSPMs are of the special kind that assigns pepr one to a 
single numerical value. DS analysis now proceeds by 
projecting these n+1 DSPMs on margins up to logically 
equivalent DSPMs on the full SSM. Assuming 
independence they are then combined into a single 
DSPM by the algorithm that Shafer called Dempster’s 
rule, that is actually just the mathematical definition of 
DS independence. The combined DSPM is the basis for 
making (p, q, r) evaluations of statements about the true 
state of the SSM.



The foregoing sketch of DS analysis is too brief to be 
assimilated de novo. Very few of my statistical 
colleagues have tried, let alone succeeded, mainly due 
I think to a mindset that excludes pepr from the realm 
of technical concepts.  In fact, of course, the DS 
scheme is incredibly simple from a technical 
standpoint, which I believe is an essential part of its 
appeal.  I will not try to fill in details of the 
mathematics, but instead proceed to a sketch of 
nonparametric inference, which Fisher introduced as 
an example of fiducial reasoning, tossing it off as an 
incidental extension of a claim that Gosset adopted 
fiducial thinking, both in the context of Student’s t, 
and in relation to what later writers would call 
nonparametric tolerance regions.



By working from the picture in Figure 1 on the next slide, 
I argue that Fisher was actually close to the (p, q, r) 
formulation of nonparametric statistical inference, but did 
not make the last step to the third rail of  “don’t know”, 
that is required to include a much extended catalog of 
illustrative inferences. Then I continue by discussing a 
weakened version of the standard nonparametric model 
that illustrates a principle that I call “protective 
weakening”, where protection refers to allowing 
counterparties to choose between the two sides of a bet, or 
more broadly among many different bets on offer. Finally I 
will indicate why I believe DS offers possibilities for 
improved analyses of complex systems.





The message that Figure 1 is intended to illustrate is that 
the values of the unknown cdf F(x) at the 5 observed 
values of X are DS posterior pepr distributed like 5 
ordered draws from a uniform distribution on (0, 1). This 
inference permits DS pepr inferences of the form (p, q, 0) 
about many interesting unknowns, such as changes in F(x) 
between any pair of observed X’s, or how a future sample 
of X’s is pepr distributed among the observed X’s.  It also 
permits DS inferences of the form (p, q, r) allowing r > 0 
for unrestricted aspects of F(x), such as F(b) – F(a) for 
any a and b, or for any statements about future sample 
X’s, such as how many will be found between a and b.



It is not difficult for mathematically trained 
academic statisticians to write down many analytic 
formulas that capture expressions for (p, q, r) 
inferences in the example illustrated by Figure 1. 
Alternatively, it may be easier to think of generating 
desired inferences from using Monte Carlo output 
from a computer. It is straightforward to replicate a 
large number of pictures like Figure 1, using 
repeated pseudorandom draws of 5 uniform pepr 
variables. Then by recalling that F(x) is tied down 
only to remain in the shaded boxes, it is easy to 
accumulate simulated frequencies that approximate 
desired (p, q, r) inferences. Passing directly from 
pictures to algorithms bypasses the need to 
understand any analytic formulas.



Personal probability is often used for evaluating 
proposed bets. If you have computed the (p, q, r) that 
F(b) – F(a) exceeds .95 for some a and b, you have 
selected, you are permitted to offer 100p euros to win 
100 euros if F(b) – F(a) turns out to exceed .95, at 
least if you accept that the opponent starts with the 
same evidence that you possess. You are advised not 
to allow your betting opponent to choose the side of 
the bet, and even more strongly advised not to allow 
your counterparty to select a and b as well as the side 
of the bet. Figure 2 illustrates a way to protect against 
one way that a counterparty could select against you if 
you do allow both choice of a and b and choice of the 
side of the bet.





The mathematical point is that when the 5 uniform draws 
illustrated in Figure 1 are regarded as plotted around a 
circle of circumference 1, then the pepr distribution of the 
arc lengths v1, v2, v3, v4, v5 is symmetric under all rotations 
of the circle. The basic inference in the nonparametric 
scheme proposed by Fisher assumes that the arcs are placed 
as shown. A more protected DSPM is obtained by 
weakening the assumption by leaving the arc lengths as 
determined by the ordered uniforms as in Figure 1, but 
asserting that you “don’t know” the angle of rotation. Your 
counterparty does not thereby win in the long run by 
choosing among patterns of X’s, for example, by judging 
that a cluster of close X’s is probably accidental. Further 
protection can be attained by permuting as well as rotating.



Finally, I comment that the sequential structure of 
the DS model construction, first a SSM, then 
DSPMs, permits analysis of complex real world 
systems that recognize a distinction that is often 
blurred. It is relatively easy to characterize an SSM 
of effectively unlimited size by specifying billions 
of variables that proceed through time. It is 
unthinkable to provide a meaningful pepr 
distribution over such a huge SSM, as in fact the 
specialization to Bayes must either attempt, or back 
down to assuming that most variables can be 
regarded as DS independent of variables in a 
feasible Bayesian analysis. 



By contrast, if a huge panoply of variables are deemed 
essential to an adequate portrayal of processes 
underlying a complex system, then within the DS 
framework it becomes possible to retain all such 
variables in an SSM, while limiting assigned DSPMs 
to evidence judged credible. The result will include 
explicit measures of “don’t know”, first to be admitted, 
and then faced, sometimes by further scientific efforts. 
At present I am not aware of real world examples that 
illustrate this principle. It should not be difficult to 
develop modest illustrations taking at least baby steps 
beyond the limitations of the Bayesian paradigm. 


