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Origins of uncertainty

• The variability of observed repeatable natural
phenomena : « randomness ».

– Coins, dice…: what about the outcome of the next
throw?

• The lack of information: incompleteness
– because of information is often lacking, knowledge

about issues of interest is generally not perfect.
• Conflicting testimonies or reports:inconsistency

– The more sources, the more likely the inconsistency



Example
• Variability: daily quantity of rain in Belfast

– May change every day
– It can be estimated through statistical observed data.
– Beliefs or prediction based on this data

• Incomplete information : Birth date of French  President
– It is not a variable: it is a constant!
– You can get the correct info somewhere, but it is not available.
– Most people may have a rough idea (an interval), a few know

precisely, some have no idea: information is subjective.
– Statistics on birth dates of other presidents do not help much.

• Inconsistent information : several sources of information
conflict concerning the birth date (a book, a friend, a
website).



The roles of probability

Probability theory is generally used for
representing two aspects:

1. Variability: capturing (beliefs induced by)
variability through repeated observations.

2. Incompleteness (info gaps): directly modeling
beliefs via betting behavior observation.

These two situations are not mutually exclusive.



Using a single probability distribution to represent
incomplete information is not entirely satisfactory:

The betting behavior setting of Bayesian subjective
probability enforces a representation of partial ignorance
based on single probability distributions.

1. Ambiguity : In the absence of information, how can a
uniform distribution tell pure randomness  and ignorance
apart ?

2. Instability : A uniform prior on x∈ [a, b] induces a non-
uniform prior on f(x) ∈ [f(a), f(b)] if f is increasing and
non-affine.

3. Empirical doubt: When information is missing,
decision-makers do not always choose according to a
single subjective probability (Ellsberg paradox).



Motivation for going beyond
probability

• Have a language that distinguishes  between uncertainty
due to variability from uncertainty due to lack of
knowledge or missing information.

• The main tools to representing uncertainty are
–  Probability distributions : good for expressing variability, but

information demanding, and paradoxical for ignorance

– Sets: good for representing incomplete information, but a very
crude representation of uncertainty

• Find representations that allow for both aspects of
uncertainty.



Set-Valued Representations of
Partial Information

• An ill-known quantity x is represented as a
disjunctive set, i.e. a subset E of mutually exclusive
values, one of which is the real one.

• Pieces of information of the form « all I know is
that x ∈ E »
– Intervals E = [a, b]: good for representing incomplete

numerical information
– Classical Logic: good for representing incomplete

symbolic (Boolean) information
    E = Models of a wff φ stated as true.
but poorly expressive

• Such sets are as subjective as probabilities



BOOLEAN POSSIBILITY THEORY

If all you know is that x ∈ E then
- You judge event A possible if it is logically consistent with

what you know : A ∩ E ≠ Ø
A Boolean possibility function : Π(A) = 1, and 0 otherwise
- You believe event A (sure) if it is a logical consequence of

what we already know : E ⊆ A
A certainty (necessity) function : N(A) = 1, and 0 otherwise
- This is a simple modal epistemic logic (KD45)

N(A) = 1 - Π(Ac) ≤ Π(A)
Π(A ∪ B) = max(Π(A), Π(B)); N(A ∩ B) = min(N(A), N(B)).



WHY TWO SET-FUNCTIONS ?

• Encoding 3 extreme epistemic states….
– Certainty of truth : N(A) = 1 (hence Π(A) = 1)
– Certainty of falsity: Π(A) = 0 (hence N(A) = 0)
– Ignorance : Π(A) = 1, N(A) = 0

….. requires 2 Boolean variables!
The Boolean counterpart of a subjective probability
With one function you can only say believe A or

believe not-A.



Find an extended  representation of
uncertainty

• Explicitly allowing for missing information (= that
uses sets)

• More informative than pure intervals or classical
logic,

• Less demanding and more expressive than single
probability distributions

• Allows for addressing the issues dealt with by both
standard probability, and logics for reasoning
about knowledge.



From sets to gradual possibility distributions

• What about the birth date of the president?
• partial ignorance with ordinal preferences : May have

reasons to believe that 1933 > 1932 ≡ 1934 > 1931 ≡ 1935
> 1930 > 1936 > 1929

• Linguistic information described by fuzzy sets:  “ he is
old ” : membership µOLD induces a possibility distribution
on possible birth dates.

• Nested confidence intervals:
x ∈ [ai, bi], with certainty ci
 such that for the expert, P(x ∈[ai, bi]) ≥ ci



Blending intervals and probability

• Representations that may account for variability,
incomplete information, and belief must combine
probability and sets.
– Sets of probabilities : imprecise probability theory
– Random(ised) sets : Dempster-Shafer theory
– Fuzzy sets: numerical possibility theory

• Relaxing the probability axioms :
– Each event has a degree of certainty and a degree of

plausibility, instead of a single degree of probability
– When plausibility = certainty, it yields probability



A GENERAL SETTING FOR REPRESENTING
GRADED CERTAINTY AND PLAUSIBILITY

• 2 set-functions Pl and Cr, with values  in [0, 1],
generalizing probability, possibility and necessity.

• Conventions :
– Pl(A) = 0  "impossible" ;
– Cr(A) =  1   "certain"
– Pl(A) =1 ; Cr(A) = 0   "ignorance" (no information)
– Pl(A) - Cr(A) quantifies ignorance about A

• Postulates
– If A⊆ B then Cr(A) ≤ Cr(B) and Pl(A) ≤ Pl(B)
– Cr(A) ≤ Pl(A)  "certain implies plausible"
– Pl(A) = 1 − Cr(Ac) duality certain/plausible



Imprecise probability theory

• A state of information is represented by a family P
of probability distributions over a set X.

• To each event A is attached a probability interval
[P*(A), P*(A)] such that
– P*(A) = inf{P(A), P∈ P}
– P*(A) = sup{P(A), P∈ P} = 1 – P*(Ac)

• {P(A), P ≥ P*} is  convex

• Usually P is strictly contained in {P(A), P ≥ P*}



Subjectivist view (Peter Walley)
• Plow(A) is the highest acceptable price for buying a bet on

event A winning 1 euro if A occurs
• Phigh(A) = 1 – Plow(Ac) is the least acceptable price for

selling this bet and Phigh(A) ≥ Plow(A)
• Two rationality conditions:

– No sure loss: {P(A), P ≥ Plow} ≠ ∅
– Coherence condition

P*(A) = inf{P(A), P ≥ Plow} = Plow(A)
• A theory that handles convex probability sets :
• Convex probability sets are usually characterized by lower

expectations of real-valued functions (gambles), not just
events.



Random sets and evidence theory
•  A family  F of « focal » (disjunctive) non-empty

sets  representing
–  A collection of incomplete observations (imprecise

statistics).
– Unreliable testimonies
– Indirect information (induced by an incomplete

mapping from a probability space)
•  A positive weighting of focal sets (a random set) :
            ∑    m(E) = 1  (mass function)
     E ∈ F
• It is a randomized incomplete information



Theory of evidence
• m(E) = probability that the most precise

description of the available  information is of the
form "x ∈ E "

• m(E) is attached to the event “getting the piece of
evidence "x ∈ E ”, not to the event E
= probability (only knowing  "x ∈ E" and nothing else)
– It is the portion of probability mass hanging over

elements of E without being allocated.

• DO NOT MIX UP  m(E) (de dicto)

and P(E) (de re)



Theory of evidence

• degree of certainty (belief) :
– Bel(A) =          ∑           m(Ei)

Ei ⊆ A, Ei ≠ Ø
– total mass of information implying  the occurrence of A
– (probability of provability)

• degree of plausibility :
– Pl(A) = ∑         m(Ei) = 1 − Bel(Ac)  ≥ Bel(A)

      Ei ∩ A ≠ Ø
– total mass of information consistent with  A
– (probability of consistency)



Theory of evidence vs.
imprecise probabilities

• The set Pbel = {P ≥ Bel} is coherent: Bel is a
special case of lower probability

• Bel is ∞-monotone (super-additive at any order)
• The solution m to the set of equations ∀ A ⊆ X

g(A) =  ∑  m(Ei)
           Ei ⊆ A

is unique (Moebius transform)
– However it is positive iff g is a belief function



Possibility Theory
(Shackle, 1961, Lewis, 1973, Zadeh, 1978)

• A piece of incomplete information "x ∈ E"
admits of degrees of possibility.

• E is mathematically a (normalized) fuzzy set.
• µE(s) = Possibility(x = s) = πx(s)
• Conventions:
∀s, πx(s)  is the degree of plausibility of x = s
πx(s) = 0 iff x = s is impossible, totally surprising
πx(s) = 1 iff x = s is normal, fully plausible, unsurprising

(but no certainty)



POSSIBILITY AND NECESSITY
OF AN EVENT

How confident are we that x ∈ A ⊂ S ? (an event A occurs)
given a possibility distribution π  for x on S

• Π(A) = maxs∈A π(s) :
         to what extent A is consistent with π

(= some x ∈ A  is possible)
 The degree of possibility that x ∈ A
• N(A) = 1 – Π(Ac) = min s∉A 1 – π(s):

to what extent no element outside A is possible
 = to what extent π implies A

 The degree of certainty (necessity) that x ∈ A



Basic properties

Π(A ∪ B) = max(Π(A), Π(B));
N(A ∩ B) = min(N(A), N(B)).

Mind that most of the time :          
Π(A ∩ B) < min(Π(A), Π(B));
 N(A ∪ B) > max(N(A), N(B)

Example: Total ignorance on A and B = Ac 

Corollary N(A) > 0 ⇒ Π(A) = 1



Qualitative vs. quantitative possibility theories

• Qualitative:
– comparative: A complete pre-ordering ≥π  on U

A well-ordered partition of U: E1 > E2 > … > En
– absolute: πx(s) ∈ L = finite chain, complete lattice...

• Quantitative: πx(s) ∈ [0, 1], integers...
One must indicate where the numbers come from.

All theories agree on the fundamental maxitivity axiom
Π(A ∪ B) = max(Π(A), Π(B))

Theories diverge on the conditioning operation



POSSIBILITY AS UPPER PROBABILITY

• Given a numerical possibility distribution π, define
    P(π) = {P |  P(A) ≤ Π(A) for all A}

• Then, generally coherence  holds:
           Π(A) = sup {P(A) | P ∈ P(π)};
           N(A) = inf {P(A) | P ∈ P(π)}

• So π is a faithful representation of a special family
of probability measures



Random set view

• A basic probability assignment :
    Let mi = αi – αi+1 then m1 +… + mn = 1, with focal sets = cuts
• π(s) = ∑i: s∈Fi mi = Pl({s}).
• π  is  a one point-coverage function, or the contour  function.
• Bel(A) = ∑Fi⊆A  mi = N(A); Pl(A) = Π(A)
• Only in the consonant case can m be recalculated from π

1

F

α3

possibility levels
1 > α2 > α3 >… > αn

α2
α4



How to build  possibility distributions
(not related to linguistic fuzzy sets!!!)

• Nested random sets (= consonant belief functions)
• Likelihood functions (in the absence of priors).
• Probabilistic inequalities (Chebyshev…)
• Confidence intervals (moving the confidence level

between 0 and 1)
• The cumulative PDF of P is a possibility

distribution (accounting for all probabilities
stochastically dominated by P)



LANDSCAPE OF UNCERTAINTY
THEORIES

BAYESIAN/STATISTICAL PROBABILITY
Randomized points

  (extreme probabilities)
UPPER-LOWER PROBABILITIES

Disjunctive sets of probabilities       
                           KAPPA FUNCTIONS

DEMPSTER UPPER-LOWER PROBABILITIES                 (SPOHN)
SHAFER-SMETS BELIEF FUNCTIONS
Random disjunctive sets                         PLAUSIBIBILITY RANKING

Quantitative Possibility theory Classical logic
Fuzzy (nested disjunctive) sets Disjunctive sets



Practical representations of probability sets

1. Fuzzy intervals (possibility theory)
2. Probability intervals (restricting the probabilities

of elementary events)
3. Probability boxes : pairs of PDF’s
4. Generalized p-boxes : pairs of comonotonic

possibility distributions (generalize 1 and 3)
5. Clouds (Neumaier): pairs of possibility

distributions (generalize 4)
 Some are special random sets other not.
(2: 2-monotone, 5 not even so)



From confidence sets to possibility
distributions

• Let E1, E2, …En be a nested family of sets
• A set of confidence levels a1, a2, …an in [0, 1]
• Consider the set of probabilities  

P = {P, P(Ei) ≥ ai, for i = 1, …n}
• Then P is representable by means of a possibility measure

with distribution
π(x) = mini = 1, …n max (µEi(x), 1− ai)



a1

a2

1

0

E1

E2

E3

π

POSSIBILITY  DISTRIBUTION INDUCED 
BY EXPERT  CONFIDENCE INTERVALS

α2

α3

m2= α2 − α3



1

0

π

α
Aα

FUZZY INTERVAL: N(Αα) = 1 − α

A possibility distribution can be obtained from any 
family of nested confidence sets : 

P(Αα) ≥ 1 − α, α ∈ (0, 1]



Probability boxes
• A set  P = {P: F* ≥ P ≥ F*} induced by two

cumulative disribution functions is called a
probability box (p-box),

• A p-box is a special random interval whose
upper and bounds induce the same ordering.

• A continuous belief function….

F*

F*

0

1

α

Eα



Possibility distributions vs.
probability boxes

• A fuzzy interval M with mode m induces
– An upper distribution function F*is the increasing side of M:
 ∀a, F*(a) = ΠM( (−∞, a] )  = M(a) if a ≤ m (= 1 otherwise).
– A lower distribution function F*  (the decreasing side of M upside

down ):
∀a, F*(a) = NM( (−∞, a] ) = 1 − M(a) if a > m  (= 0 otherwise).

• Consider the p-box P = {P: F* ≥ P ≥ F*}.

• Claim: P(π) is a proper subset of P
– Not all P in {P: F* ≥ P ≥ F*} are such that Π ≥ P
– Representing families of probabilities by fuzzy intervals is more

informative than with the corresponding pairs of PDFs:



Counter-example:

0 1 2 3
0

1

0.5
   F*    F* π 

A  triangular fuzzy number with support [1, 3] and mode 2. 
Let P be defined by P({1.5})=P({2.5})=0.5. 
Then  F* < F < F and  P ∉ PP(π) since 
P({1.5, 2.5}) = 1 > Π({1.5, 2.5}) = 0.5



How useful are these practical
representations:

• Cutting complexity:
– Convex sets of probability are very complex

representations
– Random sets are potentially exponential
– P-boxes, possibility distributions and other extensions

are linear, but still encode convex probability set, often
random sets.

• Enriching the standard probability analysis
with meta-information and capabilities for
reasoning about knowledge in the risk analysis
process, while remaining tractable on modern
computers.



Knowledge vs. evidence
• There are three kinds of information an agent can possess :

– Generic knowledge
– Singular evidence
– Beliefs

• Generic knowledge pertains to a population of items,
repeatable observables, …

• Singular evidence (observations) pertains to a single
situation

• Belief pertains to singular (not observed) events,
– Either induced by statistical knowledge (Kyburg) based on some

evidence on the case at hand.
– Or directly assessed (betting interpretation, De Finetti)
– Or defined by analogy (urn, bag of balls, Lindley)



GENERIC  vs. SINGULAR INFORMATION

• BACKGROUND KNOWLEDGE refers to a class of situations and
summarizes a set of trends
– Laws of physics,
– Commonsense knowledge (birds fly)
– Professional knowledge (of medical doctor),
– Statistical knowledge

• PIECES OF EVIDENCE refer to a particular situation (testimonies) and
are singular.
– Measurement data
– E.g. results of medical tests on a patient
– Testimonies
– Observations about the current state of facts



• Generic knowledge may be tainted with exceptions,
incompleteness, variability
– It is not absolutely true knowledge in the mathematical sense:

tainted with exceptions,
– It all comes down to considering some propositions are generally

more often the case than other ones.
– Generic knowledge induces  a normality or plausibility  relation on

the states of the world.
– numerical (frequentist) or ordinal  (plausibility ranking)
– In the numerical case a credal set can account for incomplete

generic knowledge
• Observed evidence is often made of propositions known as

true about the current world.
– It is often incomplete and can be encoded as disjunctive sets, or wff

in propositional logic.
– It delimits a reference class of situations for the case under study.
– It can be uncertain unreliable, (subjective probability, Shafer)
– It can be irrelevant, wrong,



MODELLING GENERIC KNOWLEDGE,
EVIDENCE, BELIEFS

1. Generic information (background knowledge) :  it is
modelled by a rule base, a set of default rules, a set of
conditional probabilities, a Bayesian network, a
credal net work

2. Singular information on the current situation
(evidence) Known facts (results of observations, tests,
sensor measurement, testimonies) modeled by
propositions in propositional logic, or variable
instantiations.

3. Beliefs about the current situation are predictions in
the form of propositions derived from known facts and
generic information, along with a degree of confidence



PLAUSIBLE REASONING 
• Inferring beliefs (plausible conclusions) on the current

situation from observed evidence, using generic knowledge
– Example : medical diagnosis 
Medical knowledge + test results ⇒ believed disease of the patient.

• This mode of inference makes sense regardless of the
representation, but pure set-based representations are
insufficient:

• in a purely propositional setting, one cannot tell generic
knowledge from singular evidence 

• in the first order logic setting there is no exception.
– Need more expressive settings for representing background

knowledge, like non-monotonic reasoning, probability or credal sets
• The basic tool for exception-tolerant inference is

conditioning (not well-known in classical logic).



The belief construction problem

• Beliefs of an agent about a situation  are inferred from
generic knowledge AND observed singular evidence about
the case at hand.

• They are non-monotonically derived and can be
questioned by new evidence.

• Example: Commonsense plausible inference
– Generic knowledge = birds fly, penguin are birds, penguins don’t

fly.
– Singular observed fact = Tweety is a bird
– Inferred belief = Tweety flies
– Additional evidence = Tweety is a penguin
– Inferred revised belief = Tweety does not fly



Belief construction
• Beliefs of an agent about a situation  are derived from

generic knowledge and evidence about the case.
• Probabilistic beliefs: Hacking principle again

– Uncertain singular fact = a set C = what is known about
the context of the current situation.

– Generic knowledge = probability distribution P
reflecting the trends in a population (of experiments)
relevant to the current situation

– A querying problem: is an uncertain  proposition A true
in the current situation?

– BelC(A) = P(A|C): equating belief and frequency
• Assumption: the current situation is typical of

situations where C is true



Conditional Probability
• Two concepts leading to 2 definitions:

1. derived  (Kolmogorov): P(A | C)   =
          requires P(C) ≠ 0
2. primitive (de Finetti): P(A|C) is directly

assigned a value and P is derived such that
P(A∩C) = P(A|C)·P(C).
• Makes sense even is P(C)= 0

Meaning : P(A | C) is the probability of  A
if C represents all that is hypothetically known on

the situation

P(A ∩ C)
     P(C)



THE MEANING OF CONDITIONAL
PROBABILITY

• P(A|C) : the probability of a conditional event « A in epistemic context
C » (when C is all that is known about the situation).

• It is the  probability of A knowing only C, NOT the probability of A if C
is  true.

• Counter-example :
– Uniform Probability on {1, 2, 3, 4, 5}
– P(Even |{1, 2, 3}) = P(Even |{3, 4, 5}) = 1/3
– Under a classical logic interpretation :

• From « if result ∈  {1, 2, 3} then P(Even) = 1/3 »
• And« if result ∈  {3, 4, 5} then P(Even) = 1/3 »
• Then (classical inference) : P(Even) = 1/3  unconditionally!!!!!

– But of course: P(Even) = 2/5.
• So, conditional events A|C should be studied as single

entities (De Finetti).



The nature of conditional probability

• In the frequentist settting a conditional probability P(A|C) is a relative
frequency.

• It can be used  to  represent the weight of rules of the form « generally,
if C then A » understood as « Most C’s are A’s » with exceptions

In logic a rule « if C then A » is represented by material implication Cc∪A
that rules out exceptions

• But the probability of a material conditional is not a conditional
probability!

• What is the entity A|C whose probability is a conditional probability???
                         A conditional event!!!!



Material implication:
the raven paradox

• Testing the rule « all ravens are black »
viewed as ∀x, ¬Raven(x) ∨ Black(x)

• Confirming the rule by finding situations
where the rule is true.
– Seeing a black raven confirms the rule
– Seeing a white swan also confirms the rule.
– But only the former is an example of the rule.



3-Valued Semantics of conditionals
• A rule « if C then A » shares the world into 3 parts

– Examples: interpretations where A∩C is true
– Counterexamples: interpretations where Ac∩C is true
– Irrelevant cases: interpretations where C is false

Rules « all ravens are black » and « all non-black birds are not
ravens » have the same exceptions (white ravens), but
different examples (black ravens and white swans resp.)

• Truth-table of « A|C » viewed as a connective
– Truth(A|C) = T if truth(A)= truth(C) = T
– Truth(A|C) = F if truth(A)=T and  truth(C) = F
– Truth(A|C) = I if truth(C)= F
Where I is a 3d truth value expressing « irrelevance »:
I = T: A∪Cc ;  I = F: A∩C .



A conditional event is
a pair of nested sets

• The solutions X of A∩C = X∩C form the set
 A|C = {X: A∩C⊆ X ⊆ A∪Cc}

• It defines the symbolic Bayes-like equation:
A∩C = (A|C)∩C.

• The models of a conditional A|C can be
represented by the pair (A∩C, A∪Cc), an interval
in the Boolean algebra of subsets of S

• The set A∪Cc representing material implication
contains the « non-exceptions » to the rule (the
complement of A∩Cc).



Semantics for three-valued logic of
conditional events.

• Semantic entailment: A|C |= B|D iff
    A∩C⊆ B∩D  and Cc∪A ⊆  Dc∪B
B|D has more examples and less counterexamples

than A|C.
In particular A|C |= A|B∩C is false.

• Quasi-conjunction (Ernest Adams):
A|C ∩ B|D = (Cc∪A)∩ (Dc∪B)| C∪D



Probability of conditionals
P(A|C) is totally determined by

– P(A∩C) (proportion of examples)
–  P(Ac∩C) = 1 − P(A∪Cc) (proportion of

counter-examples)

• P(A|C) is increasing with P(A∩C)  and
decreasing with P(Ac∩C)

• If A|C |= B|D then P(A|C ) ≤ P(B|D).

        P(A∩C)
P(A∩C) + 1 − P(A∪Cc)P(A|C) =



Probability and Non-Monotonic Reasoning
• Conditional probability is non-monotonic:

– P(A|C) can be close to 1 while P(A|C∩B) is close to 0:
learning B makes A implausible.

• Already at the symbolic level :
A|C |= A| C∩B is not valid (the latter has less
examples)

• The three-valued symbolic logic of conditionals is
NON monotonic.

• This is is necessary for coping with exceptions,
and draw plausible conclusions under incomplete
information.



CONDITIONING NON-ADDITIVE
CONFIDENCE MEASURES

• Definition : A conditional confidence measure g(A | C) is
a mapping from conditional events  A | C ∈ S×(S – {∅})
to  [0, 1] such that
– g(A | C) = g(A ∩ C| C) = g(Ac∪C |C)
– gC(· ) = g (.| C) is a confidence measure on C ≠ ∅

• Two approaches:
–  Bayes-like  g(A ∩ C) = g(A |1 C)·g(C)
– Explicit Approach g(A |2 C) = f(g(A ∩ C), g(A∪Cc))

Namely : f(x, y) = x/(1+x-y)



Conditioning a credal set

• Let P be a credal set representing generic information
and C an event

• Two types of processing :
1. Querying : C represents available singular facts:

compute the degree of belief in A in context  C as
Cr(A |1 C) = Inf{P(A | C), P ∈ P , P(C) > 0} (Walley).

2. Revision : C represents a set  of universal truths;
Add P(C) = 1 to the set of conditionals P.

Now we must compute Cr(A|2C) =Inf{P(A) P ∈ P , P(C) = 1}
If P(C) = 1 is incompatible with P , use maximum likelihood:

Cr(A|C) =Inf{P(A|C) P ∈ P , P(C) maximal }



Example :  A               B               C

• P is the set of probabilities such that
– P(B|A) ≥ α Most A are B
– P(C|B) ≥ β Most B are C
– P(A|B) ≥ γ Most B are A

• Querying on context A : Find the most narrow interval for
P(C|A) (Linear programming): we find

P(C|A) ≥ α ⋅ max(0, 1 − (1 − β)/γ)
– Note : if γ = 0 ,  P(C|A) is unknown even if α = 1.

• Revision: Suppose P(A) = 1, then P(C|A) ≥ α⋅β
–   Note: β > max(0, 1 − (1 − β)/γ)

• Revision improves generic knowledge, querying does
not.



CONDITIONING RANDOM SETS AS
IMPRECISE PROBABILISTIC INFORMATION

• A disjunctive random set (F, m) representing background
knowledge is  equivalent to a set of probabilities
P = {P:  ∀A, P(A) ≥ Bel(A)}  (NOT conversely).

• Querying this information based on evidence C comes
down to performing a sensitivity analysis on the
conditional probability P(·|C)
– BelC(A) = inf {P(A|C): P ∈ P, P(A) >0}
– PlC(A) = sup {P(A|C): P ∈ P, P(A) >0}



• Theorem: functions BelC(A) and PlC(A) are  belief and plausibility
functions  of the form

BelC(A) = Bel(C∩A)/(Bel(C∩A) + Pl(C∩Ac))
PlC(A) = Pl(C∩A)/(Pl(C∩A) + Bel(C∩Ac))
where BelC(A) = 1 − PlC(Ac)

• This conditioning does not add information:

• If E∩C ≠ Ø and E∩Cc ≠ Ø for all E∈ F,  then mC(C) = 1
(the resulting mass function mC expresses total ignorance
on C)
– Example: If opinion poll yields:
– m({a, b}) = α, m({c, d}) = 1− α,
The proportion of voters for a candidate in C = {b, c} is

unknown.
– However if we hear a and d resign (Pl({a, d} = 0) then

m({b}) = α, m({c}) = 1− α (Dempster conditioning, see
further on)



CONDITIONING UNCERTAIN SINGULAR
EVIDENCE

• A mass function m on S, represents uncertain evidence
• A new sure piece of evidence is viewed as a conditioning

event C
1.   Mass transfer : for all E ∈ F, m(E) moves to C ∩ E ⊆ C

– The mass function after the  transfer is mt(B) = Σ E : C ∩ E = B m(E)
– But the mass transferred to the empty set may not be zero!
– mt(∅) =  Bel(Cc) = Σ E : C ∩ E = Ø m(E) is the degree of conflict

with evidence C
2. Normalisation: mt(B) should be divided by Pl(C)
         = 1 − Bel(Cc) =  Σ E : C ∩ E ≠ Ø m(E)
• This is revision of an unreliable testimony by a sure fact



DEMPSTER RULE OF CONDITIONING =
PRIORITIZED MERGING

The conditional plausibility function Pl(.|C) is
                          Pl(A ∩ C)
Pl(A|C) =                             ;  Bel(A|C) = 1−  Pl(Ac|C)
                                Pl(C)

• C surely contains the value of the unknown quantity described by m.
So Pl(Cc) = 0
– The new information is interpreted as asserting the impossibility of Cc:

Since Cc is impossible you can change  x ∈ Ε into x ∈ E∩ C and transfer
the mass of focal set E to E ∩ C.

• The new information improves the precision of  the evidence

• This conditioning is different from
Bayesian (Walley) conditioning



EXAMPLE OF REVISION OF EVIDENCE :
The criminal case

• Evidence 1 : three suspects : Peter Paul Mary
• Evidence 2 : The killer was randomly selected

man vs.woman by coin tossing.
– So, S = { Peter, Paul, Mary}

• TBM modeling: The masses are m({Peter, Paul})
= 1/2 ; m({Mary}) = 1/2
– Bel(Paul) = Bel(Peter) = 0. Pl(Paul) = Pl(Peter) = 1/2
– Bel(Mary) = Pl(Mary) = 1/2

• Bayesian Modeling: A prior probability
– P(Paul) = P(Peter) = 1/4; P(Mary) = 1/2



• Evidence 3 : Peter was seen elsewhere at the time of the killing.
• TBM: So Pl(Peter) = 0.

– m({Peter, Paul}) = 1/2;       mt({Paul}) = 1/2 
– A uniform  probability on {Paul, Mary} results.

• Bayesian Modeling:
– P(Paul | not Peter) = 1/3; P(Mary | not Peter) = 2/3.
– A very debatable result that depends on where the story starts.

Starting with i males and j females:
• P(Paul | Paul OR Mary) = j/(i + j);
• P(Mary | Paul OR Mary) = i/(i + j)

• Walley conditioning:
– Bel(Paul) = 0;  Pl(Paul) = 1/2
– Bel(Mary) = 1/2; Pl(Mary) = 1



Important pending issues

• Statistical inference tools for imprecise probability models
• Elicitation methods for belief functions and imprecise probabilities
• Information measures beyond entropy, variance, etc.
• Conditioning : several definitions for several purposes.
• Independence: distinguish between epistemic and objective notions.
• Find a general setting for information fusion operations (e.g. beyond

Dempster rule of combination).
• Find a consensual approach to decision-making under partial

ignorance.



4 roles of conditioning
• Prediction : given evidence C and generic knowledge (a

probability model P), predict observation A with belief
degree P(A|C).

• Fusion : Merging uncertain evidence (a subjective
probability P) with a sure fact C

• Revision of generic knowledge : Revise generic
knowledge P by absorbing a new piece of information P(C)
= 1, minimising change (probability kinematics)

• Learning :  Given a probabilistic model that depends on a
parameter θ  interpreted as a conditional probability P(A|θ),
improve the knowledge about θ based on a series of
observations C1…Cn (e.g. by computing P(θ| C1…Cn)).

• Each task may require a specific form of conditioning in
uncertaity theories generalizing probabilities



Conclusion
• There exists a coherent range of uncertainty

theories combining interval and probability
representations.
– Imprecise probability is the proper theoretical umbrella
– The choice between subtheories depends on how

expressive it is necessary to be in a given application.
– There exists simple practical representations of

imprecise probability
• Many open problems, theoretical, and

computational, remain.
• How to get this general non-dogmatic approach to

uncertainty accepted by traditional statisticians?



Final quotes Lindley (2000, The Statistician)

• « Probability is the only satisfactory expression of
uncertainty »

• « Other rules, like those of fuzzy logic and possibility theory
dependent on maxima and minima rather than sums and
products, are out »

• « The last sentence is not strictly true…. A fine critique is
Walley  who went on to construct a system with a pair of
numbers… instead of the single probability. The result is a
more complicated system. My position is that the
complication seems unnecessary. » 

• MY CONCLUSION : So possibility theory,
simple support functions, random sets, p-boxes
being as simple as probability, are back in!


