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Jeyzy Neyman'’s statistical philosophy:

inductive behavior

As a statistician, | am in the business of telling clients things
with 95% confidence.

My goals:
be informative
be right 95% of the time

Question: Why isn’t this good enough for a theory of evidence?

Answer: Because two statisticians who are right 95% of the time
may tell the court different and even contradictory things.
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Jeyzy Neyman'’s

statistical philosophy:
Inductive behavior

.

R. A. Fisher’'s

cricitism of Neyman:

relative subsets

o

Demspter-Shafer
(1960s-1970s)

Dempster-Shafer methods for combining multiple observations from a
parametric model do not solve the relevant subsets problem, either.

Romnald A. Fisher
1890-1962

Jerzy Neyman
1894-1981
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Jeyzy Neyman's
statistical philosophy:
inductive behavior

Ville’s betting interpretation of probability:

You will not mulitply the capital you risk by
a large factor.

Shafer-Vovk game-theoretic
probability (2001)

/

Defensive forecasting (2004)

It turns out that you can make forecasts that pass Ville's tests
for a specified sequence of forecasting tasks.



How can Ville's interpretation
handle the case of two
defensive forecasters who tell
the court different or even
contradictory things?
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Two ways of interpreting degrees of belief in terms of betting:
De Finetti: Offer to bet at the odds defined by the degrees of belief.

Ville: Judge that a strategy for taking advantage of such betting offers
will not multiply the capital it risks by a large factor.

Both can justify updating ordinary probabilities by conditioning.

Only Ville can justify Dempster's rule of combination.

http://arxiv.org/abs/1001.1653

Ville i1s natural in game-theoretic probability, where
P(A) is the cost of a ticket that pays $1 if A happens.


http://arxiv.org/abs/1001.1653

Game-Theoretic Probability
www.probabllityandfinance.com

Probability
and Finance
It’s Only a Game! Glenn Shafer & Vladimir Vovk

N Wiley, 2001

Second edition planned for 2012.
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http://www.probabilityandfinance.com/

Use game theory instead of measure
theory as a mathematical framework for
probabillity.

Classical theorems are proven by betting
strategies that multiply a player's stake
by a large factor if the theorem's
prediction fails.
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Pascal’'s question to Fermat

Peter
* /
* 64

Paul needs 2 points to win.
Peter needs only one.

0

Blaise Pascal (1623—1662).

f the game must be broken off,
now much of the stake should
Paul get? 12




Fermat's answer
(measure theory)

Count the possible outcomes.

Suppose they play two rounds. There
are 4 possible outcomes:

Peter wins first, Peter wins second
Peter wins first, Paul wins second
Paul wins first, Peter wins second
Paul wins first, Paul wins second

W e

Paul wins only in outcome 4.
So his share should be Y4, or
16 pistoles.

Pascal didn’t like the
argument.

eter

\

Paul

Pierre Fermat, 1601-1665
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Pascal's answer (game theory)

Paul

Paul

0

0

o4
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Measure-theoretic probability begins with a probability space:
 Classical: elementary events with probabilities adding to one.
 Modern: space with filtration and probability measure.

Probability of A =total of probabilities for elementary
events that favor A.

Game-theoretic probability begins with a game:
» One player offers prices for uncertain payoffs.
« Another player decides what to buy.

Probability of A = initial stake you need in order to get 1 if
A happens.

15




Interpretation of game-theoretic probability

Mathematical definition of probability:
P(A) = cost of getting $1 if A happens

Version 1. An event of very small probability will
not happen. (Cournot’s principle)

Version 2. You will not multiply your capital by a
large factor without risking bankruptcy. (Efficient
market hypothesis / Ville’s principle)

Borel, Kolmogorov, and others advocated version 1
between 1900 and 1950.

Jean Ville stated version 2 in the 1930s.
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Measure-theoretic probability

Emile Borel Andrei Kolmogorov
1871-1956 1903-1987

You do the mathematics
of probability by finding
the measures of sets.

Game-theoretic probability

Jean André Ville Volodya Vovk
1910-1989 1960-
(Borel's student) (Kolmogorov’'s student)

You do the mathematics
of probabillity by finding

betting strategies. -



Theorems

We prove a claim (e.g., law of large
numbers) by constructing a strategy that
multiplies the capital risked by a large
factor If the claim fails.

Statistics

A statistical test Is a strategy for trying to
multiply the capital risked.

18



To make Pascal’s theory part of
modern game theory, we must
define the game precisely.

* Rules of play
e Each player’s information

e Rule for winning
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Example of a game-theoretic probability theorem.

Ko = 1.
FORn=1,2,...:
Forecaster announces p, € [0, 1].
Skeptic announces s, € K.
Reality announces yn € {0,1}.
Kn = Kn_ 1+ sn(un — pn).
Skeptic wins if
(1) Ky, is never negative and
(2) either Iimn_-.;m%EZf:l (yi —pi) =0
or limMnp—oc Kn = oc.

T heorem Skeptic has a winning strategy.
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Ville's strategy

Ko=1.
FOR n=12,...:

Skeptic announces s, = E.
Reality announces y, € {0,1}.

Kn = Kaot + Sﬂ.[:yﬂ — %}

Ville suggested the strateqy

n—1
4 n—1
S . — = Ko Th—1 — . where r,_q 1= i-
snly1, Yn—1) —— 1(J 1 5 ) Fn—1 ;y
IT produces the capital
K. = Eﬂ_v'ﬂ,!{n ——
(n 4 1)!

From the assumption that this remains bounded by some constant C', you
can easlly derive the strong law of large numbers using Stirling’s formula.
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As an empirical theory, game-theoretic
probability makes predictions: A will not
happen If there Is a strategy that multiplies
your capital without risking bankruptcy when
A happens.

Defensive forecasting:

Amazingly, predictions that pass all statistical
tests are possible (defensive forecasting).
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Defensive forecasting

Under repetition, good probability forecasting is possible.

e VWe call it defensive because it defends against a
quasi-universal test.

e Your probability forecasts will pass this test even if reality
plays against you.

23



Why Hilary Putnam thought good probability prediction
IS impossible. . .

FORn=1,2,...
Forecaster announces p,, € [0, 1].
Skeptic announces s,, € R.
Reality announces vy, € {0, 1}.
Skeptic's profit := s, (y, — pn).

Reality can make Forecaster uncalibrated by setting

‘ 1 ifp, <0.5
yﬂ- . — .
O ifp,>0>5

Skeptic can then make steady money with

1 ifp<o05
T l-1 ifp> 0.5
24



But Skeptic's move
1 if p< 0.5
Sn — . .
—1 ifp=05>5

iSs discontinuous in p. This infinitely abrupt shift—an artificial
idealization—is crucial to the counterexample.

Forecaster can defeat any strategy for Skeptic if
e The strategy for Skeptic is continuous in p, or
e Forecaster is allowed to randomize, announcing a probability
distribution for p rather than a sharp value for p.

See Working Papers 7 & 8 at www.probabilityandfinance.com.
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1. When a probabilistic theory successfully predicts a long
sequence of future events (as quantum mechanics does),
it tells us something about phenomena.

2. When a probabilistic theory predicts only one step at a
time (basing each successive prediction on what
happened previously), it has practical value but tells us
nothing about phenomena. Defensive forecasting pass
statistical tests regardless of how events come out.

3. When we talk about the probability of an isolated event,
which different people can place in different sequences,
we are weighing arguments. This is the place of evidence
theory.
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De Moivre's argument for P(A&B) = P(A)P(B|A)

Assumptions
1. P(A) = price of a ticket that pays 1 if A happens.

2. P(A)z = price of a ticket that pays z if A happens.
(Here x can be any real number.)

3. After A happens (we learn A and nothing else),
P(B|A)x = price of a ticket that pays z if B happens.

Argument
1. Pay P(A)P(B|A) to get P(B|A) if A happens. If A does

happen, pay P(B|A) to get 1 if B happens.
2. So P(A)P(BJ|A) is the cost of getting 1 if A&B happens.

27




De Finetti's adopted De Moivre's argument for P(A&B) =
P(A)P(B|A), changing “price” to “an individual's price".

Assumptions

1. P(A)xz = price at which I will sell a ticket that pays z if A
happens.

2. After A happens (we learn A and nothing else),
P(B|A)x = price at which I will sell a ticket that pays = if B
happens.

Argument

1. You pay me P(A)P(B|A) to get P(B|A) if A happens. If A
does happen, you pay me P(BJA) to get 1 if B also happens.

2. So P(A)P(BJ|A) is what you need to pay me to get 1 if A&B
happens.
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De Finetti interpreted De Molvre’s prices in a
particular way.

There are other ways.

In game-theoretic probability (Shafer and Vovk

2001) we interpret the prices as a prediction.

The prediction: You will not multiply by a large
factor the capital you risk at these prices.
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The game-theoretic argument for P(B|A) =

Context Winning against given prices means multiplying your
capital by a large factor buying or selling the tickets priced
(and others like them in the long run).

Hypothesis You will not win against P(A) and P(A&B).

Conclusion You still will not win if after A (and nothing else) is
known, P(A&B)/P(A) is added as a new probability for B.

How to prove it Show that if & is a strategy against all three
probabilities, then there exists a strategy &’ against P(A) and
P(A& B) alone that risks the same risks and payoffs.
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Proof: Let M be the amount of B tickets & buys after learning A. To
construct &' from &, delete these B tickets and add

P(A&B)

M tickets on A&EB and — M tickets on A
P(A)

to S's purchases in the initial situation.

e | he tickets added have zero total initial cost:
P(A&RB)

MP(A&B) - M
(A&B) P )

P(A) = 0.

e [ he tickets added and the tickets deleted have the same net payoffs:

0 if A does not happen;
P(A&RB) ,
— M if A happens but not B;
P(A) PP i
MI[1- P(A&B) if A and B both happen.
P(A)
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Comments

1. Game-theoretic advantage over de Finetti:
the condition that we learn only A and
nothing else (relevant) has a meaning
without a prior protocol (see my 1985 article
on conditional probabillity).

2.Winning against probabilities by multiplying
the capital risked over the long run: To
understand this fully, learn about game-
theoretic probability.
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Cournotian understanding of Dempster-Shafer

e Fundamental idea: transferring belief

e Conditioning

e Independence

e Dempster’'s rule



Fundamental idea: transferring belief
e Variable w with set of possible values 2.
e Random variable X with set of possible values X.

e We learn a mapping M : X — 2% with this meaning:

If X =2, then w el (x).

e For A C 2, our belief that w € A is now

B(A) = P{z|l(z) C A}.

Cournotian judgement of independence: Learning the relationship between
X and w does not affect our inability to beat the probabilities for X.
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Example: The sometimes reliable witness

e Joe is reliable with probability 30%. When he is reliable, what he says is
true. Otherwise, it may or may not be true.

X = {reliable,not reliable} P(reliable) = 0.3 P(not reliable) = 0.7
e Did Glenn pay his dues for coffee? 2 = {paid,not paid}

e Joe says “Glenn paid.”

[ (reliable) = {paid} r(not reliable) = {paid, not paid}

e New beliefs:
B(paid) = 0.3 B(not paid) =0

Cournotian judgement of independence: Hearing what Joe said does not
affect our inability to beat the probabilities concerning his reliability.
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Example: The more or less precise witnhess

e Bill is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise, approximate, not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

e What did Glenn pay? 2 ={0,%1,%5}

e Bill says “Glenn paid $ 5."
[ (precise) = {$5} r(approximate) = {$1,%$5} r(not reliable) = {0,%$1, %5}

e New beliefs:

B{O} =0 B{$1} =0 B{$5} = 0.7 B{$1,$5} = 0.9

Cournotian judgement of independence: Hearing what Bill said does not
affect our inability to beat the probabilities concerning his precision.

36



Conditioning
e Variable w with set of possible values €2.
¢ Random variable X with set of possible values Y.

e We learn a mapping I : XY — 2% with this meaning:

If X =, then w & (x).

M(z) = for some = € X.

For A C €2, our belief that w € A is now

P{a|M(x) CA & (2) # 0}
P{z|l(x) #= 0} '

B(A) =

Cournotian judgement of independence: Aside from the impossibility of the

x for which IM'(x) = 0, learning I does not affect our inability to beat the
probabilities for X.
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Example: The witness caught out

e [om is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = [precise, approximate, not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

¢ What did Glenn pay? 2 =10,%1,%5}

e [om says “Glenn paid $ 10."
[ (precise) = (I [(approximate) = {$5} [(not reliable) = {0.%1,%5}
e New beliefs:
B{0O} =0 B{$1} =0 B{$5} = 2/3 B{$1,%5} =2/3
Cournotian judgement of independence: Aside ruling out his being

absolutely precise, what Tom said does not help us beat the probabilities for
his precision.
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Independence

Xgin = {BIill precise, Bill approximate, Bill not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

XTom = { Tom precise, Tom approximate, Tom not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

Product measure:

ABill & Tom = Aein % Xrom

P(Bill precise, Tom precise) = 0.7 x0.7=0.49

P(BIill precise, Tom approximate) = 0.7 x0.2=0.14
etc.

Cournotian judgements of independence: Learning about the precision of
one of the witnesses will not help us beat the probabilities for the other.

MNothing novel here. Dempsterian independence = Cournotian independence.



Example: Independent contradictory witnesses
e Joe and Bill are both reliable with probability 70%.
e Did Glenn pay his dues? (2 = {paid, not paid}

e Joe says, "Glenn paid."” Bill says, “Glenn did not pay.”

1(Joe reliable) = {paid} M1 (Joe not reliable) = {paid, not paid}
M2(Bill reliable) = {not paid} M2(Bill not reliable) = {paid, not paid}

e [ he pair (Joe reliable,Bill reliable), which had probability 0.49, is ruled

out.

0.21 0.21
aid) = ——=0.41 not paid) = —— = 0.41
B(paid) 051 B(not paid) 01

Cournotian judgement of independence: Aside from learning that they are
not both reliable, what Joe and Bill said does not help us beat the
probabilities concerning their reliability.
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Dempster's rule (independence + conditioning)
¢ Variable w with set of possible values 2.
e Random variables X; and X- with sets of possible values A and 5.
¢ Form the product measure on X7 x 5.

e We learn mappings My : X1 — 2% and My ; A — 2%

If X9 =21, then w & My(x1). If Xo =2, then w € Ma(x2).

So if (X1,X2) = (x1,22), then w € M (x1) NCa(z2).

Conditioning on what is not ruled out,

[P{(Il,:t.‘g)m 7= Fl(;w:l) M rg(.’[‘g) - A}
]P{(Il,;rg)m 7= rl(l‘l) i rg(Ig)}

B(A) =

Cournotian judgement of independence: Aside from ruling out some (x1,72),
learning the I'; does not help us beat the probabilities for X1 and X-.
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You can suppress the I's and describe Dempster’'s rule in terms
of the belief functions

Joe: B1{paid} = 0.7 B1{not paid} =0
Bill: Bo{not paid} = 0.7 Bo{paid} =0
Bill
0.7 0.3
not paid e
0.21
aid) = —— =0.41
B(paid) = ——
0.7 paid
0.21
Joe not paid) = —— = 0.41
B paid) 0.51
0.3 ¥
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Dempster's rule is unnecessary. It is merely a composition of
Cournot operations: formation of product measures,
conditioning, transferring belief.

But Dempster’'s rule is a unifying idea. Each Cournot operation
Is an example of Dempster combination.

e Forming product measure is Dempster combination.

e Conditioning on A is Demspter combination with a belief function that
agives belief one to A.

o Transferring belief is Dempster combination of (1) a belief function on
X x € that gives probabilities to cylinder sets {x} x 2 with (2) a belief

function that gives probability one to {(z,w)|w € [(x)}.
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Two advertisements

1. Electronic Journal for History of Probability
and Statistics

2. Upcoming workshop on game-theoretic
probability, Royal Holloway, June 21-23
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Electronic Journal
for
History of Probability and Statistics

www.]ehps.net

June 2009 issue: History of Martingales

Who knew this journal exists?
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http://www.jehps.net/

GTP 2010

Third Workshop on Game-Theoretic
Probability and Related Topics

21 - 23 June 2010

Royal Holloway, University of London
Egham, Surrey, UK

http://www.clrc.rhul.ac.uk/GTP2010/ 4
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