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Abstract—In this paper we study the problem of conditioning
a belief function b with respect to an event A by geometrically
projecting such belief function onto the simplex associated with A
in the simplex of all belief functions. Two different such simplices
can be defined, as each belief function can be represented as
the vector of its basic probability values or the vector of its
belief values. We show here that defining geometric conditional
b.f.s by minimizing Lp distances between b and the conditioning
simplex in the mass space produces simple, elegant results with
straightforward semantics in terms of degrees of belief. Such
results can be interpreted in the light of a generalization to belief
functions of the notion of imaging introduced by Lewis.
Keywords: Belief functions, conditioning, geometric ap-
proach, Lp norms.

I. INTRODUCTION

Several theories of and approaches to conditioning in the
framework of belief functions (b.f.s) [1], [2] have been pro-
posed along the years [3]–[9]. In the original model, in which
belief functions are induced by multi-valued mappings of
probability distributions, Dempster’s conditioning can indeed
be judged inappropriate from a Bayesian point of view. Spies
[10] defined conditional events as sets of equivalent events
under conditioning. By applying multi-valued mapping to such
events, conditional belief functions were introduced. An updat-
ing rule generalizing the total probability theorem was derived
from them. Kyburg [11] analyzed the links between Dempster
conditioning of belief functions and Bayesian conditioning of
closed, convex sets of probabilities, of which belief functions
are a special case. He arrived at the conclusion that the
probability intervals generated by Dempster updating were
included in those generated by Bayesian updating.

One way of dealing with such criticism is to abandon all
notions of multivalued mapping to define belief directly in
terms of basis belief assignments, as in Smets’ transferable
belief model [12]. The unnormalized conditional belief func-
tion bU (.|B) with b.b.a. mU (.|B)1

mU (.|B) =
{ ∑

X⊆Bc m(A ∪X) if A ⊆ B

0 elsewhere

is the minimal commitment specialization of b such that
plb(Bc|B) = 0 [13]. In [14], Xu and Smets used conditional
belief functions to represent relations between variables in
evidential networks, and presented a propagation algorithm
for such networks. In [15], Smets pointed out the distinction

1Author’s notation.

between revision and focussing in the conditional process,
and how they lead to unnormalized and geometric [16] con-
ditioning bG(A|B) = b(A∩B)

b(B) , respectively. In these two
scenarios he proposed generalizations of Jeffrey’s rule of
conditioning [17], [18] P (A|P ′,B) =

∑
B∈B

P (A∩B)
P (B) P ′(B)

to the framework of belief functions.
Slobodova also conducted some early studies on the issue of
conditioning. In particular, a multi-valued extension of condi-
tional b.f.s was introduced [19], and its properties examined.
More recently, Tang and Zheng [20] also discussed the issue
of conditioning in a multi-dimensional space. Klopotek and
Wierzchon [21] provided a frequency-based interpretation for
conditional belief functions.

Quite recently, Lehrer [22] proposed a geometric approach
to determine the conditional expectation of non-additive prob-
abilities. Such conditional expectation was then applied for
updating, whenever information became available, and to
introduce a notion of independence. Early attempts of studying
conditioning in a geometric framework appeared in [23],
where the simplicial geometry of the set 〈b〉 of all belief
functions obtained by Dempster combination with a given b.f.
b, or conditional subspace, was described.

A. Contribution

Along this line, in this paper we propose indeed to define
the notion itself of conditioning by geometric methods. The
idea is simple: as the collection of events {B ⊆ A} included
in a given conditioning event A determine a simplex in the
space of belief functions, conditional belief functions can
be defined geometrically by minimizing a certain distance
between the original b.f. b and the conditioning simplex. Such
geometric conditioning can take place in two different spaces
M and B, according to whether we represent belief functions
are vectors of mass values or belief values. We show here
that defining geometric conditional b.f.s by minimizing Lp

distances between b and the conditioning simplex in the mass
space M produces simple, elegant results with straightforward
interpretations in terms of degrees of belief.

In summary, L1-conditional belief functions in M form
a polytope in which each vertex is the b.f. obtained by re-
assigning the entire mass not contained in A to a single focal
element {B ⊆ A}. In turn, the L2 conditional b.f. is the
barycenter of this polytope, i.e., the belief function with core
in A obtained by re-assigning the mass

∑
B 6⊂A m(B) to each

focal element {B ⊆ A} on an equal basis.



B. Interpretation

Such results can be interpreted as generalization of Lewis’
imaging approach to belief revision originally formulated in
the context of probabilities [24]. The idea behind imaging is
that, upon observing that some state x ∈ Θ is impossible,
you transfer the probability initially assigned to x completely
towards the remaining state you deem the most similar to x
[25]. Peter Gärdenfors [26] extends Lewis’ idea by allowing a
fraction λi of the probability of such state x to be re-distributed
to all remaining states xi (

∑
i λi = 1).

In the case of belief functions, the mass m(C) of each
focal element not included in A should be re-assigned to the
“closest” focal element in {B ⊆ A}. If no information on the
similarity between focal elements is available or make sense
in a particular context, ignorance translates into allowing all
possible set of weights λ(B) for Gärdenfors’ (generalized) be-
lief revision by imaging. This yields the set of L1 conditional
b.f.s. If such ignorance is expressed by assigning instead equal
weight λ(B) to each B ⊆ A, the resulting revised b.f. is the
unique L2 conditional b.f., the barycenter of the L1 polytope.

C. Paper outline

We first briefly recall in Section II the geometric approach
to belief functions. In particular, we show how each b.f.
corresponds to both the vector of its belief values in the
belief space B, and the vector of its mass values in the mass
space M. In this paper we pick the latter, and propose to
measure distances there by Lp norms. Therefore, in Sections
III, IV and V we prove the analytical forms of the L1, L2

and L∞ conditional belief functions in M, and discuss their
interpretation in terms of degrees of belief.
We conclude in Section VI by discussing the obtained results,
hinting to the case of geometric conditioning in the belief
space, and providing an interpretation of geometric conditional
b.f.s in the mass space in terms of the notion of imaging
introduced by Lewis [24], generalized to belief functions.

II. GEOMETRIC CONDITIONAL BELIEF FUNCTIONS

A. Belief functions as vectors

As belief functions b : 2Θ → [0, 1], b(A) =
∑

B⊆A mb(B),
are set functions defined on a the power set 2Θ of a finite space
Θ, they are obviously completely defined by the associated set
of 2|Θ| − 2 belief values {b(A), ∅ ( A ( Θ} (since b(∅) = 0,
b(Θ) = 1 for all b.f.s). They can therefore be represented
as points of RN−2, N = 2|Θ| [23]. The set B of points of
RN−2 which correspond to a belief function is a simplex,
namely: B = Cl(~bA, ∅ ( A ⊆ Θ), where Cl denotes the
convex closure operator and ~bA is the vector associated with
the categorical [12] belief function assigning all the mass to
a single subset A ⊆ Θ: mbA(A) = 1, mbA(B) = 0 for all
B 6= A. The vector ~b ∈ B that corresponds to a belief function
b has in B coordinates: ~b =

∑
∅(A⊆Θ mb(A)~bA.

In the same way, though, each belief function is uniquely
associated with the related set of mass values {m(A), ∅ ( A ⊆

Θ} (Θ this time included). It can therefore be seen also as a
point of RN−1, the vector ~m of its N − 1 mass components:

~m =
∑

∅(B⊆Θ

mb(B)~mB . (1)

Of course such vectors ~m will live in the subspace M of
vectors whose components sum to 1.

B. Conditioning simplex and Lp norms

Similarly, the vector ~a associated with any belief function
whose mass supports only focal elements {∅ ( B ⊆ A}
included in A can be decomposed as:

~a =
∑

∅(B⊆A

ma(B)~mB . (2)

The set of such vectors form a simplex MA
.= Cl(~mB , ∅ (

B ⊆ A). The same is true in the belief space, where each
belief function ~a assigning mass to focal elements included
in A can be decomposed as: ~a =

∑
∅(B⊆A a(B)~bB . These

vectors live in a simplex BA
.= Cl(~bB , ∅ ( B ⊆ A). We

call MA and BA the conditioning simplex in the mass and
the belief space, respectively.

Given a belief function b, we call geometric conditional
belief function induced by a distance function d in M (B)
the b.f.(s) bd(.|A) which minimize(s) the distance d(b,MA)
(d(b,BA)) between b and the conditioning simplex in M (B).
In this paper we are mainly concerned with such geometric
conditional b.f.s in the mass space M.

We consider as distance functions the three major Lp norms:
d = L1 (Section III); d = L2 (Section IV); d = L∞ (Section
V). For vectors ~m, ~m′ ∈ M representing the b.p.a.s of two
belief functions b, b′, such norms read as:

‖~m− ~m′‖1 .=
∑

∅(B⊆Θ

|m(B)−m′(B)|;

‖~m− ~m′‖2 .=
√ ∑

∅(B⊆Θ

(m(B)−m′(B))2;

‖~m− ~m′‖∞ .= max
∅(B⊆Θ

|m(B)−m′(B)|.

(3)

III. CONDITIONAL BELIEF FUNCTIONS BY L1 NORM

Given any belief function b with basic probability assign-
ment mb collected in a vector ~mb ∈ M, the set of L1

conditional belief functions bL1,M(.|A) is the set of b.f.s
whose basic probability assignments mL1,M(.|A) satisfy:

~mL1,M(.|A) .= arg min
~a∈MA

‖~mb − ~a‖1. (4)

Using the expression (3) of the L1 norm in the mass space
M, (4) can be written as:

arg min
~a∈MA

‖~mb − ~a‖1 = arg min
~a∈MA

∑

∅(B⊆Θ

|mb(B)− a(B)|.



A. A change of variables

By exploiting the fact that the candidate solution ~a is an
element of MA (Equation (2)) we can greatly simplify this
expression. Namely,

~mb − ~a =
∑

∅(B⊆Θ

mb(B)~mB −
∑

∅(B⊆A

a(B)~mB

=
∑

∅(B⊆A

(mb(B)− a(B))~mB +
∑

B 6⊂A

mb(B)~mB .

The following change of variables

β(B) .= mb(B)− a(B) (5)

further yields:

~mb − ~a =
∑

∅(B⊆A

β(B)~mB +
∑

B 6⊂A

mb(B)~mB . (6)

We need to observe, though, that the variables {β(B), ∅ (
B ⊆ A} are not independent. Indeed,

∑

∅(B⊆A

β(B) =
∑

∅(B⊆A

mb(B)−
∑

∅(B⊆A

a(B) = b(A)− 1

as
∑
∅(B⊆A a(B) = 1 by definition, since ~a ∈ MA. There-

fore in the optimization problem there are just 2|A| − 2 inde-
pendent variables, while: β(A) = b(A)− 1−∑

∅(B(A β(B).
By replacing the above equality into (6) we finally get:

~mb − ~a =
∑

∅(B(A

β(B)~mB+

+
(
b(A)− 1−

∑

∅(B(A

β(B)
)

~mA +
∑

B 6⊂A

mb(B)~mB .
(7)

B. L1-conditional belief functions and dominating masses

In the L1 case we get then

‖~mb−~a‖1 =
∑

∅(B(A

|β(B)|+
∣∣∣b(A)−1−

∑

∅(B(A

β(B)
∣∣∣, (8)

plus the constant
∑

B 6⊂A |mb(B)| which does not depend on
β. This is a function of the form

∑

i

|xi|+
∣∣∣−

∑

i

xi − k
∣∣∣, k ≥ 0 (9)

which has an entire simplex of minima, namely: xi ≤ 0 ∀i,∑
i xi ≥ −k. See Figure 1 for the case of two variables, x1

and x2 (corresponding to the L1 conditioning problem on an
event A of size |A| = 2). The minima of the L1 norm (8) are
therefore given by the following system of constraints:

{
β(B) ≤ 0 ∀∅ ( B ( A,∑
∅(B(A β(B) ≥ b(A)− 1.

(10)

In the original simplicial coordinates {a(B), ∅ ( B ⊆ A} of
the candidate solution ~a in MA this reads as:
{

mb(B)− a(B) ≤ 0 ∀∅ ( B ( A,∑
∅(B(A(mb(B)− a(B)) ≥ b(A)− 1

i.e., a(B) ≥ mb(B) ∀∅ ( B ⊆ A.

Figure 1. The minima of a function of the form (9) with two variables x1,
x2 form the triangle x1 ≤ 0, x2 ≤ 0, x1 + x2 ≥ −k depicted here.

Recall that the core Cb of a b.f. b is the union of its focal
elements B : mb(B) 6= 0.

Theorem 1: Given a belief function b : 2Θ → [0, 1] and
an arbitrary non-empty focal element ∅ ( A ⊆ Θ, the set of
L1 conditional belief functions bL1,M(.|A) with respect to A
in M is the set of b.f.s with core in A such that their mass
dominates that of b over all the subsets of A:

bL1,M(.|A) = {b′ : Cb′ ⊆ A, mb′(B) ≥ mb(B) ∀∅ ( B ⊆ A}.
(11)

C. Simplex of L1-conditional belief functions

As we may observe in Figure 1, the set of L1 conditional
belief functions in M has geometrically the form of a simplex.
It is easy to see that by Equation (10) the 2|A|− 2 vertices of
such simplex are associated with the following solutions:




β(X) = 0 ∀∅ ( X ( A;
β(B) = b(A)− 1, β(X) = 0 ∀∅ ( X ( A, X 6= B

∀∅ ( B ( A.

Such solutions read in the {a(B)} coordinates as the vectors
~m[b]|BL1

A = ~a ∈MA such that:

a(B) = mb(B) + 1− b(A),
a(X) = mb(X) ∀∅ ( X ( A,X 6= B

(12)

for all ∅ ( B ⊆ A (A included).
Theorem 2: Given a b.f. b : 2Θ → [0, 1] and an arbitrary

non-empty focal element ∅ ( A ⊆ Θ, the set of L1 conditional
belief functions bL1,M(.|A) with respect to A in M is the
simplex ML1,A[b] = Cl(~m[b]|BL1

A) with vertices (12).
It is important to notice that all the vertices of the L1

conditional simplex fall inside MA proper. In principle, some
of them could have fallen in the linear space generated by
MA but outside the simplex MA, i.e., some of the solutions
a(B) could have been negative. This is not the case, somehow
supporting the validity of such an approach to conditioning
based on geometric projections onto the appropriate simplices.

IV. CONDITIONAL BELIEF FUNCTIONS BY L2 NORM

We can proceed to find the L2 conditional belief function(s)
by using again the form (6) of the difference vector ~mb − ~a,
where again ~a is an arbitrary vector of the conditional simplex
MA. In this case it is convenient to recall that the minimal



L2 distance between a point and a vector space is attained by
the point of the vector space such that the difference vector is
orthogonal to all the generators ~gi of the vector space:

arg min
~q∈V

‖~p− ~q‖2 = q̂ ∈ V : 〈~p− ~q,~gi〉 = 0 ∀i

whenever ~p ∈ Rm, V = span(~gi, i) (the vector space
generated by the vectors {~gi, i}).

In our case ~p = ~mb is the original mass function, ~q = ~a is
an arbitrary point in MA, while the generators of MA are all
the vectors ~gB = ~mB − ~mA, ∀∅ ( B ( A. Such generators
are vectors of the form

[0, · · · , 0, 1, 0, · · · , 0,−1, 0, · · · , 0]′

with all zero entries but entry B (equal to 1) and entry A
(equal to -1). Making use of Equation (6), the condition 〈~mb−
~a, ~mB − ~mA〉 = 0 assumes then a very simple form

β(B)− b(A) + 1 +
∑

∅(X(A,X 6=B

β(X) = 0

for all possible generators of MA, i.e.:

2β(B)+
∑

∅(X(A,X 6=B

β(X) = b(A)−1 ∀∅ ( B ( A. (13)

A. The unique solution of the L2 problem
The system (13) is a linear system of 2|A| − 2 equations in

2|A| − 2 variables (the β(X)). It can therefore be written as

A~β = (b(A)− 1)~1,

where ~1 is the vector of the appropriate size with all entries
at 1. Its unique solution is trivially ~β = (b(A) − 1) · A−1~1.
The matrix A is of the form

A =




2 1 · · · 1
1 2 · · · 1

· · ·
1 1 · · · 2


 .

Simple linear algebra proves that the inverse of such matrix
has the form

A−1 =
1

d + 1




d −1 · · · −1
−1 d · · · −1

· · ·
−1 −1 · · · d




where d is the number of rows (or columns) of A. It is easy
to see that A−1~1 = 1

d+1
~1, where in our case d = 2|A| − 2.

The solution of the system (13) is then given by

~β = A−1~1(b(A)− 1) =
1

2|A| − 1
~1(b(A)− 1),

i.e., arg min~β ‖~mb − ~a‖2 is such that

β(B) =
b(A)− 1
2|A| − 1

∀∅ ( B ( A. (14)

In the {a(B)} coordinates the solution reads as

a(B) = mb(B) +
1− b(A)
2|A| − 1

∀∅ ( B ⊆ A, (15)

A included.

B. L2 conditional b.f. as barycenter of dominating masses

According to Equation (15) then, the L2 conditional belief
function is unique, and corresponds to the mass function which
redistributes in an equal, even way the mass the original belief
function assign to focal elements not included in A to each
and all the subsets of A.

Theorem 3: Given a belief function b : 2Θ → [0, 1] and an
arbitrary non-empty focal element ∅ ( A ⊆ Θ, the unique L2

conditional belief functions bL2,M(.|A) with respect to A in
M is the b.f. whose b.p.a. redistributes the mass 1− b(A) to
each focal element B ⊆ A in an equal way:

mL2,M(B|A) = mb(B)+
1

2|A| − 1

∑

B 6⊂A

mb(B) ∀∅ ( B ⊆ A.

Besides, L2 and L1 conditional belief functions in M
display a strong relationship, as:

Theorem 4: Given a belief function b : 2Θ → [0, 1] and
an arbitrary non-empty focal element ∅ ( A ⊆ Θ, the L2

conditional belief function bL2,M(.|A) with respect to A in
M is the center of mass of the simplex ML1,A[b] of L1

conditional belief functions with respect to A in M.
Proof: By definition the center of mass of ML1,A[b],

whose vertices are given by (12), is the vector

1
2|A| − 1

∑

∅(B⊆A

~m[b]|BL1
A

whose entry B is given by

1
2|A| − 1

[
mb(B)(2|A| − 1) + (1− b(A))

]

i.e., (15).

V. CONDITIONAL BELIEF FUNCTIONS BY L∞ NORM

Similarly, we can use Equation (7) to minimize the L∞
distance between the original mass vector ~mb and the condi-
tioning subspace MA. Let us rewrite it for sake of readability:

~mb − ~a =
∑

∅(B(A

β(B)~mB +
∑

B 6⊂A

mb(B)~mB

+

(
b(A)− 1−

∑

∅(B(A

β(B)

)
~mA.

Its L∞ norm reads as:

‖~mb − ~a‖∞ = max
{
|β(B)| ∅ ( B ( A,

|mb(B)| B 6⊂ A,
∣∣∣b(A)− 1−

∑

∅(B(A

β(B)
∣∣∣
}

.

As |b(A) − 1 − ∑
∅(B(A β(B)| = | − ∑

B 6⊂A mb(B) −∑
∅(B(A β(B)| = |∑B 6⊂A mb(B) +

∑
∅(B(A β(B)|, the

above norms simplifies as:

max
{

|β(B)| ∅ ( B ( A, max
B 6⊂A

{mb(B)},
∣∣∣

∑

B 6⊂A

mb(B) +
∑

∅(B(A

β(B)
∣∣∣
}

.
(16)



This is a function of the form

f(x1, ..., xn) = max
{
|xi| ∀i, |

∑

i

xi + k1|, k2

}

= max
{

g(x1, ..., xn), k2

}

where g(x1, ..., xn) = max
{
|xi| ∀i, |

∑
i xi + k1|

}
, with

k1, k2 ≥ 0, k2 ≤ k1. The level sets g = const of a function
of the form g is represented (in the case in which there are
two variables, i.e., when A = 2) in Figure 2.

Figure 2. The level sets g(x1, x2) = const of functions of the form
g(x1, x2) = max{|x1|, |x2|, |x1 + x2 + k1|}, k1 ≥ 0 are triangles with
vertices [−x,−x]′, [−x, +x]′, [x,−x]′. The minimum of such a function g
lies in [x1, x2]′ = [−k1/3,−k1/3]′.

The minimum of such a function lies in
1

n+1 [−k1, ....,−k1]′, where n is the number of variables. The
function there assumes value min g = k1

n+1 . Its level sets
g(x1, ..., xn) = const have the form of simplices of the kind
depicted in Figure 2 for the case of 2 variables.
Now, what is the minimum of f(x1, ..., xn)? Clearly,
if k2 ≤ min g = k1

n+1 then f has also minimum in
1

n+1 [−k1, ....,−k1]′.
Immediately, since (16) is a function of the form g in
n = 2|A| − 2 variables (the β(B)) we obtain the following
result.

Lemma 1: If maxB 6⊂A{mb(B)} ≤ 1−b(A)
2|A|−1

then
arg min~β ‖~mb − ~a‖∞ is such that

β(B) =
b(A)− 1
2|A| − 1

∀∅ ( B ( A. (17)

As an immediate consequence:
Theorem 5: If

max
B 6⊂A

{mb(B)} ≤
∑

B 6⊂A mb(B)

2|A| − 1
(18)

then the L∞ conditional belief function bL∞,M(.|A) with
respect to A in M is unique, and corresponds to the L2

conditional belief function (15), and the barycenter of the
polytope of L1 conditional belief functions.

Proof: It suffices to notice that (17) coincides with (14).

In the case in which condition (18) does not hold, we
get again an entire simplex of solutions, whose epistemic
interpretation is difficult to understand. We will work on this
point in the near future.

VI. DISCUSSION AND PERSPECTIVES

A. Features of geometric conditional belief functions

From the analysis of geometric conditioning in the space of
mass functions M a number of facts arise:
• geometric conditional b.f.s, even though obtained by min-

imizing purely geometric distances, possess very simple
and elegant interpretations in terms of degrees of belief;

• while some of them correspond to pointwise condi-
tioning, some others form whole polytopes of solutions
whose vertices also have simple interpretations;

• conditional belief functions associated with the major L1,
L2 and L∞ norms are strictly related to each other;

• they are all characterized by the fact that, in the way
they re-assign mass from focal elements B 6⊂ A not in A
to focal elements in A, they do not distinguish between
subsets which have non-empty intersection with A and
those which have not.

The last point is quite interesting: mass geometric condi-
tional b.f.s do not seem to care about the contribution focal
elements make to the plausibility of the conditioning event
A, but only to whether they contribute or not to the degree
of belief of A. The reason is, roughly speaking, that in mass
vectors ~m the mass of a given focal element appears only in
the corresponding entry of ~m. In opposition, belief vectors
~b are such that each entry ~b(B) =

∑
X⊆B mb(X) of theirs

contains information about the mass of all the subsets of B.
As a result, it is to be expected that geometric conditioning
in the belief space B will see the mass redistribution process
function in a manner linked to the contribution of each focal
element to the plausibility of the conditioning event A. This
interesting matter is also left for future analysis.

B. Interpretation as general imaging for belief functions

The form of geometric conditional belief functions in the
mass space can be naturally interpreted in the framework of
an interesting approach to belief revision, known as imaging
[25]. We will illustrate this notion and how it related to our
results using the example proposed in [25].

Suppose you briefly glimpse at a transparent urn filled with
black or white balls, and are asked to assign a probability value
to the possible “configurations” of the urn. Suppose you are
given three options: 30 black balls and 30 white balls (state
a); 30 black balls and 20 white balls (state b); 20 black balls
and 20 white balls (state c). Hence, Θ = {a, b, c}. Since the
observation only gave you the vague impression of having seen
approximately the same number of black and white balls, you
deem the states a and c equally likely, but at the same time you
deem the event ”a or c” twice as likely as the state b. Hence,
you assign probability 1/3 to each of the states. Now, you are
told that state c is false. How do you revise the probabilities
of the two remaining states a and b?



Lewis [24] argued that, upon observing that a certain state
x ∈ Θ is impossible, you should transfer the probability
originally allocated to x to the remaining state which you
deem the “most similar” to x. In this case, a is the state most
similar to c, as they both consider an equal number of black
and white balls. You obtain (2/3, 1/3) as probability values
of a and b, respectively. Peter Gärdenfors further extended
Lewis’ idea (general imaging) by allowing to transfer a part λ
of the probability 1/3, initially assigned to c, towards state a,
and the remaining part 1−λ to state b. These fractions should
be independent of the initial probabilistic state of belief.

Now, what happens when our state of belief is described by
a belief function, and we are told that A is true? In the general
imaging framework we need to re-assign the mass m(C) of
each focal element not included in A to all the focal elements
B ⊆ A, according to some weights {λ(B), B ⊆ A}.
Suppose there is no reason to attribute larger weights to any
focal element in A, as, for instance, we have no meaningful
similarity measure (in the given context for the given problem)
between the states described by two different focal elements.
We can then proceed in two different ways.
One option is to represent our complete ignorance about the
similarities between C and each B ⊆ A as a vacuous belief
function on the set of weights. If applied to all focal elements
C not included in A, this results in an entire polytope of
revised belief functions, each associated with an arbitrary
normalized weighting. It is trivial to see that this coincides
with the set L1 conditional belief functions bL1,M(.|A) of
Theorem 2.
On the other hand, we can represent the same ignorance
as a uniform probability distribution on the set of weights
{λ(B), B ⊆ A}, for all C 6⊂ A. Again, it is easy to see that
general imaging produces in this case a single revised b.f., the
L2 conditional belief functions bL2,M(.|A) of Theorem 3.

As a final remark, the “information order independence”
axiom of belief revision states that the revised belief should
not depend on the order in which the information is made
available. In our case, the revised (conditional) b.f.s obtained
by observing first an event A and later another event A′ should
be the same as the ones obtained by revising first with respect
to A′ and then A. It is not difficult to see that both the L1

and L2 geometric conditioning operators presented here meet
such axiom, supporting the case for their rationality.

VII. CONCLUSIONS

In this paper we showed how the notion of conditional
belief function b(.|A) can be introduced by geometric ways,
by projecting any belief function onto the the simplicial
subspace associated with the event A. The result depends on
the choice of the vectorial representation for b, and of the
distance function to minimize. We thoroughly analyzed the
case of conditioning a b.b.a. vector by means of the norms
L1, L2, and L∞, and showed that such results have simple
interpretations in terms of degrees of belief. Interpretations
in terms of general imaging of these results were also given.
A complete analysis of geometric conditioning in the belief

space is the next obvious step. A full understanding of how
geometric conditional b.f.s relate to classical approaches to
conditioning is also needed, and will be pursued in the future.

REFERENCES

[1] G. Shafer, A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[2] A. P. Dempster, “Upper and lower probabilities induced by a multivariate
mapping,” Annals of Mathematical Statistics, vol. 38, pp. 325–339, 1967.

[3] A. Chateauneuf and J. Jaffray, “Some characterization of lower probabil-
ities and other monotone capacities through the use of möbius inversion,”
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