
Equivalence of Correction and Fusion Schemes
Under Meta-Independence of Sources

Frédéric Pichon
Thales Research and Technology

Campus Polytechnique
1 avenue Augustin Fresnel

91767 Palaiseau cedex, France
Email: Frederic.Pichon@thalesgroup.com

Abstract—Dubois and Denœux recently proposed a general
approach to belief function correction and fusion, where sources
can be partially relevant and truthful. In this paper, we answer
an open question that they have raised: under so-called meta-
independence of the states of the sources, it is equivalent to
combine the belief functions provided by the sources using
Dubois and Denœux general combination rule or to combine by
the unnormalized Dempster’s rule each of the belief functions
corrected using Dubois and Denœux correction scheme. This
result is shown in a general setting, where source behavior
assumptions do not have to be restricted to relevance and
truthfulness.
Keywords: Dempster-Shafer Theory, Belief Functions, Fu-
sion, Combination Rules, Correction.

I. INTRODUCTION

The Dempster-Shafer theory of belief functions [1], [6], [9]
is a framework for modeling partial knowledge and reasoning
under uncertainty. Two important parts of Dempster-Shafer
theory are the correction and the fusion of belief functions.
Correction refers to the possibility of transforming the in-
formation provided by a source according to metaknowledge
on that source. Fusion is concerned with the combination of
information provided by several sources, where the result of
the combination depends on metaknowledge on the sources.

In most correction and fusion schemes used today, meta-
knowledge on the sources amounts to assumptions on the
reliability of the sources, with the basic underlying idea that
the information provided by a reliable (respectively unreliable)
source is to be accepted (respectively discarded). The reliabil-
ity of a source is thus assimilated to its relevance – a source is
said to be relevant if it is competent on the subject on which
it provides information [2].

In [2], Dubois and Denœux consider that the reliability of a
source is composed of both its relevance and its truthfulness.
A source is truthful if it does not lie, that is, the information
it provides is the same as the one that it possesses. A source
is not truthful if it tells the contrary of what it believes to be
the truth. Thanks to this alternate view of reliability, Dubois
and Denœux are able to present some interesting results. In
particular, they introduce a new correction scheme, which
takes into account uncertain metaknowledge on the source’s
relevance and truthfulness and that generalizes the correction
scheme called discounting and proposed by Shafer [6]. They

also show how to reinterpret all connectives of Boolean
logic in terms of source behavior assumptions with respect
to relevance and truthfulness. Furthermore, they obtain a
general combination rule, which generalizes the unnormalized
version of Dempster’s rule [1] to all Boolean connectives
and that integrates the uncertainties pertaining to assumptions
concerning the behavior of the sources in the fusion process
itself.

Dubois and Denœux combination rule is general in that it
does not require the behaviors of the sources to be indepen-
dent. If we can assume such “meta-independence” between the
sources, the following interesting question, raised in [2], im-
mediately comes to mind: is it equivalent to combine the belief
functions provided by the sources using Dubois and Denœux
general combination rule or to combine by the unnormalized
Dempster’s rule each of the belief functions corrected using
Dubois and Denœux correction scheme? This paper provides
the answer to this question. The answer is presented in a
general setting, where source behavior assumptions do not
have to be restricted to relevance and truthfulness.

The rest of this paper is organized as follows. The main
results of [2] that are of interest for the present paper are first
recalled in Section II. In Section III, a generalization of Dubois
and Denœux approach to belief function correction and fusion
is provided, where source behavior assumptions do not have to
be restricted to relevance and truthfulness. The main result of
this paper is presented in Section IV. In Section V, we compare
our generalization of Dubois and Denœux correction scheme
to another general correction scheme proposed by Mercier et
al. in [4]. Section VI concludes the paper.

II. RELEVANCE AND TRUTHFULNESS IN INFORMATION
CORRECTION AND FUSION

A. Relevance and Truthfulness: Formalization

The relevance of a source S is modeled using a frame R =
{R,¬R} where R means that S is relevant, and ¬R means that
S is not relevant. Similarly, the truthfulness of S is modeled
using a frame T = {T,¬T} where T means that S is truthful,
and ¬T means that S is not truthful, i.e., is lying. Let H denote
the possible states of S with respect to its truthfulness and
relevance. By definition, H = R× T . Furthermore, let h1 =
(R, T ), h2 = (R,¬T ), h3 = (¬R, T ) and h4 = (¬R,¬T ).



We have thus H = {(R, T ), (R,¬T ), (¬R, T ), (¬R,¬T )} =
{h1, h2, h3, h4}.

Let us suppose that a source S provides a piece of informa-
tion on the value taken by a parameter x defined on a domain
X . Let us further assume that this information takes the form
x ∈ A, for some A ⊆ X . Formally, metaknowledge on a
source, with respect to its relevance and truthfulness, amounts
to the following transformations:

• if the source is nonrelevant, we replace x ∈ A by x ∈ X;
• if the source is relevant,

– either it is truthful, in which case we keep the
information x ∈ A,

– or it lies, in which case we replace x ∈ A by x ∈ A,
where A denotes the complement of A.

For all A ⊆ X , we can define a multivalued mapping ΓA from
H to X that encodes this reasoning:

ΓA(h1) = A,

ΓA(h2) = A,

ΓA(h3) = ΓA(h4) = X. (1)

ΓA(h) indicates how to interpret the information x ∈ A
provided by the source in each configuration h of the source.
We may also consider non elementary hypotheses correspond-
ing to subsets of possible states of the source. For instance,
the hypothesis “the source is either relevant or truthful, but
not both” corresponds to the subset {h2, h3} of H. If we
note H ⊆ H such an hypothesis on the source, it is clear
that we have ΓA(H) = ∪h∈HΓA(h). We may remark that
ΓA(H) = X as soon as H is not elementary; this has a
theoretical interest as we will see in Section V.

B. Relevance and Truthfulness: Correction

The approach described in the previous section may be
generalized in the three following ways: either we know
something for sure on the behavior of the source which
provides an uncertain piece of information, or the source
provides a clear information but our metaknowledge on the
source is uncertain, or both the information provided and the
relevance and truthfulness of the source are uncertain.

Let us consider the first situation: we know for sure that
an hypothesis H ⊆ H on the behavior of the source is
correct, and the information provided by the source on X is
uncertain. In this paper, we assume uncertain information to be
modeled using belief functions [6] and to be represented using
associated mass functions. Formally, a mass function mX on
X is a probability distribution on the power set of X , hence∑

A⊆X mX(A) = 1. Let mX
S denote the uncertain information

provided by the source S on X . The metaknowledge H ⊆ H
on the behavior of the source together with the mappings ΓA,
A ⊆ X , defined in the previous section, allow us to transform
the mass function mX

S into another mass function noted mX

and given by, for all B ⊆ X:

mX(B) =
∑

A:ΓA(H)=B

mX
S (A).

Let us now consider the second situation: the source
provides a clear information of the form x ∈ A but our
metaknowledge on the source is uncertain and represented by
a mass function mH. In this case, the information x ∈ A is
transformed into a mass function mX given by, for all B ⊆ X:

mX(B) =
∑

H:ΓA(H)=B

mH(H)

More generally, both the information provided and the
relevance and truthfulness of the source are uncertain. In such
a case, we obtain the mass function mX by transforming the
mass function mX

S provided by the source according to our
uncertain metaknowledge mH as follows, for all B ⊆ X:

mX(B) =
∑
H

mH(H)
∑

A:ΓA(H)=B

mX
S (A) (2)

Equation (2) will be hereafter referred to as Dubois and
Denœux’ Correction (DDC).

C. Relevance and Truthfulness: Fusion

We consider now that we have two sources S1 and S2. Let
Hi = Ri×Ti = {(Ri, Ti), (Ri,¬Ti), (¬Ri, Ti), (¬Ri,¬Ti)}={
hi

1, h
i
2, h

i
3, h

i
4

}
denote the possible states of source Si, i =

1, 2, with respect to its truthfulness and relevance. The set of
elementary hypotheses on the source behaviors with respect
to relevance and truthfulness is noted H12 = H1 ×H2.

Let us first assume that the source S1 states x ∈ A and
S2 states x ∈ B, A,B ⊆ X . The result of the combination
of these pieces of information will depend on the hypothesis
made on the behavior of the sources. We can define a multi-
valued mapping ΓA,B from H12 to X , which assigns to each
elementary hypothesis h ∈ H12 the result of the fusion of the
two pieces of information x ∈ A and x ∈ B. As we must
conclude ΓA(h1

j ) when S1 is in state h1
j ∈ H1, and we must

conclude ΓB(h2
k) when S2 is in state h2

k ∈ H2, where ΓA and
ΓB are the mappings defined in Section II-A, it is clear that
we must conclude ΓA(h1

j ) ∩ ΓB(h2
k) when the sources are in

state (h1
j , h

2
k) ∈ H12. Hence, the mapping ΓA,B is defined

by ΓA,B(h) = ΓA(h↓H1) ∩ ΓB(h↓H2), for all h ∈ H12,
where h↓Hi denotes the projection of h onto Hi. We may
also consider non elementary hypotheses corresponding to
subsets of possible states of the sources. If we note H ⊆ H12

such an hypothesis on the sources, it is clear that we have
ΓA,B(H) = ∪h∈HΓA,B(h) = ∪h∈H(ΓA(h↓H1)∩ΓB(h↓H2)).
Let us remark that each hypothesis H ⊆ H12 on the sources
relevance and truthfulness induces a Boolean connective. For
instance, the hypothesis H = {(R1, T1, R2, T2)}, i.e., both
sources are relevant and truthful, induces ΓA,B(H) = A∩B.
Actually, an interesting result shown in [2] is that each Boolean
connective can be reinterpreted in terms of source behavior
assumptions, with respect to relevance and truthfulness.

In a similar manner as is done in Section II-B, we can
generalize the above approach to information fusion in three
different ways: either we know something for sure on the be-
havior of the sources which provide uncertain information, or
the sources provide clear information but our metaknowledge



on the sources is uncertain, or both the information provided
and the relevance and truthfulness of the sources are uncertain.

We first handle the case where we know for sure that
an hypothesis H ⊆ H12 on the behavior of the sources
is correct, and the information provided by the sources is
uncertain, that is S1 and S2 provide information on X in
the form of two mass functions mX

1 and mX
2 , respectively.

We further assume that the sources are independent, where
independence means the following: if we interpret mX

i (A)
as the probability that the source Si provide the information
x ∈ A, then the probability that the source S1 provide the
information x ∈ A and the source S2 provide conjointly the
information x ∈ B is the product mX

1 (A) ·mX
2 (B) [2]. Under

hypothesis H , the probability mX
1 (A) · mX

2 (B) is allocated
to the set C = ΓA,B(H) = ∪h∈H(ΓA(h↓H1) ∩ ΓB(h↓H2)),
hence the result of the fusion of mX

1 and mX
2 given H ⊆ H12

is the mass function mX defined by, for all C ⊆ X:

mX(C) =
∑

A,B:C=ΓA,B(H)

mX
1 (A) ·mX

2 (B). (3)

A variant of (3) is the unnormalized version of Demp-
ster’s rule [1], which corresponds to the hypothesis H =
{(R1, T1, R2, T2)}, i.e., to the assumption that both sources
are relevant and truthful. Indeed, under such an hypothesis H ,
Equation (3) reduces to, for all C ⊆ X:

mX(C) =
∑

A,B:C=A∩B

mX
1 (A) ·mX

2 (B), (4)

which is the definition of the unnormalized Dempster’s rule.
In the rest of this paper, the unnormalized Dempster’s rule
is noted ∩©. Furthermore, the mass function resulting from the
combination by ∩© of two mass functions mX

1 and mX
2 is noted

mX
1 ∩©2 = mX

1 ∩©mX
2 . Let us also note that another variant of (3)

is the disjunctive rule [3], [8], which has a similar definition
as the unnormalized Dempster’s rule (∩ is replaced by ∪ in
(4)). The disjunctive rule is noted ∪©.

Let us now consider the second situation: the sources
provide clear information of the form x ∈ A and x ∈ B but
our metaknowledge on the source is uncertain and represented
by a mass function mH12 . In this case, the result of the fusion
is a mass function mX defined by, for all C ⊆ X:

mX(C) =
∑

H:C=ΓA,B(H)

mH12(H). (5)

More generally, both the information provided and the
relevance and truthfulness of the sources are uncertain, i.e.,
the sources provide information in the form of two mass
functions mX

1 and mX
2 and the metaknowledge on H12 is

represented by a mass function mH12 . This leads to the
following generalization of both (3) and (5):

mX(C) =
∑
H

mH12(H)
∑

A,B:C=ΓA,B(H)

mX
1 (A) ·mX

2 (B). (6)

Equation (6) will be hereafter referred to as Dubois and
Denœux’ Fusion (DDF).

D. The Meta-Independence Question

DDF is general in that it does not require the behaviors of
the sources to be independent. Indeed, for instance, we can
handle the following dependency between the sources using
DDF: we know that both sources are relevant, but that S1 is
truthful if and only if S2 is also truthful.

If we can assume such “meta-independence” between the
sources, we will have mH12(H) > 0 only if H = H1 ×
H2 with Hi ⊆ Hi and mH12(H) = mH1(H1)mH2(H2) [2].
For instance, let us assume truthful sources with independent
probabilities p1 and p2 of relevance, respectively. We have
then

mH1({(R1, T1)}) = p1,

mH1({(¬R1, T1)}) = 1− p1 (7)

and

mH2({(R2, T2)}) = p2,

mH2({(¬R2, T2)}) = 1− p2 (8)

and

mH12({(R1, T1, R2, T2)}) = p1 · p2,

mH12({(R1, T1,¬R2, T2)}) = p1 · (1− p2),
mH12({(¬R1, T1, R2, T2)}) = (1− p1) · p2,

mH12({(¬R1, T1,¬R2, T2)}) = (1− p1) · (1− p2).(9)

In such a particular setting, an interesting result shown in [2]
is that if the sources provide simple information on X of the
form x ∈ A and x ∈ B respectively, then it is equivalent to
combine these pieces of information using DDF (Equation (6))
with mH12 defined by (9) or to combine by the unnormalized
Dempster’s rule each of these pieces of information corrected
using DDC (Equation (2)) with mH1 and mH2 defined by (7)
and (8) respectively.

More generally, one may wonder if it is equivalent to
combine by DDF the uncertain information mX

1 and mX
2

or to combine by the unnormalized Dempster’s rule each of
these pieces of information corrected using DDC, when our
uncertain metaknowledge mH12 on the behavior of the sources
satisfy the meta-independence assumption. This is what we
call the “meta-independence question”. We provide the answer
to this question in Section IV in a setting introduced in the
next section, which generalizes Dubois and Denœux approach.

III. SOURCE BEHAVIOR ASSUMPTIONS: A GENERAL
APPROACH

A. A General Setting for Source Behavior Assumptions

The notions of relevance and truthfulness were formalized
in Section II-A using 2|X| multivalued mappings ΓA from
H = R× T to X , which are defined by (1) for all A ⊆ X .
In this section, we propose a generalization of this setting to
account for general source behavior assumptions.

Let us suppose that a source S provides a piece of informa-
tion on the value taken by a parameter x defined on a domain
X . We suppose that this information takes the form x ∈ A, for



some A ⊆ X . Let us further assume that the source may be in
N elementary states instead of four (as is the case in Section
II-A), i.e., we extend the frame H from H = {h1, h2, h3, h4}
to H = {h1, ..., hN}. In addition, we consider that we are
not interested in the value taken by x, but rather by the value
taken by a parameter y defined on a domain Y (x and y may or
may not be the same parameter). Let us assume that we have at
our disposal some metaknowledge that relate the information
x ∈ A provided by the source on X to an information of the
form y ∈ B, for some B ⊆ Y , for each possible state h ∈ H
of the source.

The reasoning described in the previous paragraph can
be formalized as follows. For each A ⊆ X , we define a
multivalued mapping ΓA from H to Y . ΓA(h) indicates how to
interpret on Y the information x ∈ A provided by the source in
each configuration h of the source. As done in Section II-A, we
may also consider non elementary hypotheses corresponding
to subsets of possible states of the source. If we note H ⊆ H
such an hypothesis on the source, it is clear that we have
ΓA(H) = ∪h∈HΓA(h).

It is easy to see that the setting introduced in Section II-A
is a particular case of this general scheme, with N = 4 and
Y = X and where the multivalued mappings ΓA are defined
by (1) for all A ⊆ X .

B. Behavior-Based Correction Scheme

Similarly to what is done in Section II-B, the approach
described in the previous section may be generalized to the
case where both the information provided by the source and
the metaknowledge on the source are uncertain.

Let mX
S denote the uncertain information provided by the

source S and let mH represent our uncertain metaknowledge
on the source. Through a straightforward generalization of
the reasoning used in Section II-B, we easily see that the
metaknowledge on the behavior of the source together with
the mappings ΓA, A ⊆ X , defined in the previous section,
allow us to transform the mass function mX

S into another mass
function mY defined by, for all B ⊆ Y :

mY (B) =
∑
H

mH(H)
∑

A:ΓA(H)=B

mX
S (A). (10)

Equation (10) will be hereafter referred to as Behavior-Based
Correction (BBC).

BBC is clearly a generalization of DDC. In addition, let us
remark that BBC generalizes a familiar operation of Dempster-
Shafer theory, called ballooning extension [5], [8], which
allows us to explicitly reinterpret this operation in terms of
source behavior assumptions. The ballooning extension is the
process that permits the transformation of a mass function mX

defined on a domain X to a mass function on an extended
space X ′, where X ′ contains all the elements of X and some
new elements. Let mX⇑X′

denote the ballooning extension
of mX to X ′. It is defined as mX⇑X′

(A′) = mX(A) if
A′ = A ∪ (X ′\X) and mX⇑X′

(A′) = 0 otherwise.
Let us now explain how BBC can be seen as a generalization

of the ballooning extension. Suppose that a source S provides

a piece of information on the value taken by a parameter
x defined on a domain X ′. We assume further that the
information provided by S takes the form of a mass function
mX

S on the domain X ⊆ X ′. We consider that there may be
two reasons why the source provides a piece of information on
the value taken by x on the domain X instead of X ′: either
the source has a limited perception of the actual domain of
x or it knows that the values in X ′\X are impossible. Let
h1 denote the state where the source has a limited perception
of the actual domain of x and let h2 denote the state where
the source knows the values in X ′\X to be impossible. We
associate to these two states the multivalued mappings ΓA,
A ⊆ X , from H = {h1, h2} to X ′ defined by, for all A ⊆ X:

ΓA(h1) = A ∪ (X ′\X),
ΓA(h2) = A.

ΓA(h1) translate the idea that when the source states x ∈ A,
A ⊆ X , we may only safely conclude that x ∈ A ∪ (X ′\X),
due to the limited perception of the source. Let mH represent
our metaknowledge on the behavior of the source. If mH is
such that mH({h1}) = 1 and if we use BBC to transform mX

S

into a mass function on X ′, then we see that BBC reduces to
the ballooning extension. The ballooning extension can thus be
seen as a correction scheme corresponding to an hypothesis on
the behavior of the source, with respect to limited perception
of the actual domain of a parameter by the source.

C. Behavior-Based Fusion Scheme

Let us now consider that we have two sources S1 and S2.
Let Hi =

{
hi

1, ..., h
i
N

}
denote the possible states of source

Si, i = 1, 2. The set of elementary hypotheses on the source
behaviors is noted H12 = H1 ×H2.

We assume that the source S1 states x ∈ A and S2 states
x ∈ B, A,B ⊆ X . The result on Y of the combination of these
pieces of information will depend on the hypothesis made on
the behavior of the sources. We can define a multivalued map-
ping ΓA,B from H12 to Y , which assigns to each elementary
hypothesis h ∈ H12 the result of the fusion of the two pieces
of information. As we must conclude ΓA(h1

j ) when S1 is in
state h1

j ∈ H1, j ∈ N , and we must conclude ΓB(h2
k) when S2

is in state h2
k ∈ H2, k ∈ N , it is clear that we must conclude

ΓA(h1
j ) ∩ ΓB(h2

k) when the sources are in state (h1
j , h

2
k) ∈

H12. Hence, we have ΓA,B(h) = ΓA(h↓H1) ∩ ΓB(h↓H2),
for all h ∈ H12. Furthermore, it is clear that we also have
ΓA,B(H) = ∪h∈HΓA,B(h) = ∪h∈H(ΓA(h↓H1)∩ΓB(h↓H2)),
for all H ⊆ H12.

Following the same path to that of Section II-C, we can
generalize the above reasoning to the situation where both the
information provided by the sources and our metaknowledge
on the sources are uncertain. Let mX

1 and mX
2 be the uncertain

information provided by the sources S1 and S2, respectively,
and let mH12 represent our uncertain metaknowledge on the
sources. Based on this information and the same reasoning as
the one developed in Section II-C, we conclude that the result



of the fusion is a mass function mY on Y defined by

mY (C) =
∑
H

mH12(H)
∑

A,B:C=ΓA,B(H)

mX
1 (A) ·mX

2 (B), (11)

for all C ⊆ Y . Equation (11) will be referred to as Behavior-
Based Fusion (BBF). BBF is clearly a generalization of DDF.

IV. META-INDEPENDENCE RESULT

The meta-independence question formulated in Section II-D
in the context of Dubois and Denœux setting, can be straight-
forwardly extended to the more general setting introduced in
Section III: if meta-independence of the sources is assumed,
is it equivalent to combine by BBF the uncertain information
mX

1 and mX
2 or to combine by the unnormalized Dempster’s

rule each of these pieces of information corrected using BBC?
In order to answer this question, we need first to provide
the definitions of some operations related to the use of belief
functions defined on product spaces.

A. Operations on Product Spaces

Let mX×Y denote a mass function defined on the Cartesian
product X × Y of the domains of two parameters x and y.
The marginal mass function mX×Y ↓X is defined as

mX×Y ↓X(A) =
∑

{B⊆X×Y,(B↓X)=A}

mX×Y (B), ∀A ⊆ X,

where (B ↓ X) denotes the projection of B onto X .
Conversely, let mX be a mass function defined on X . Its

vacuous extension [6] on X × Y is defined as:

mX↑X×Y (B) =

 mX(A) if B = A× Y,
for some A ⊆ X,

0 otherwise.

Given two mass functions mX
1 and mY

2 , their combination
by the unnormalized Dempster’s rule on X×Y can be obtained
by combining their vacuous extensions on X × Y . Formally:

mX
1 ∩©mY

2 = mX↑X×Y
1 ∩©mY ↑X×Y

2 .

B. Equivalence of Correction and Fusion Schemes

Let us consider again the setting of Section III-B. Let us
suppose that a source S provides a piece of information on
X in the form of a mass function mX

S . Let mH be a mass
function on H = {h1, ..., hN} representing our uncertain
metaknowledge on the source. Furthermore, let us define for
each A ⊆ X , a multivalued mapping ΓA from H to Y
indicating how to interpret on Y the information x ∈ A ⊆ X
provided by the source in each configuration h ∈ H of the
source. Let us now define a mass function mH×Y

SΓ on H× Y
by, for all A ⊆ X:

mH×Y
SΓ (∪h∈H {h} × ΓA(h)) = mX

S (A).

For instance, if H is the space defined in Section II-A, and
if the multivalued mappings ΓA are defined by (1) for all
A ⊆ X (thus Y = X), the mass function mH×Y

SΓ is given by
mH×Y

SΓ ({h1}×A∪{h2}×A∪{h3}×X∪{h4}×X) = mX
S (A),

for all A ⊆ X .

Lemma 1. We have, for all A ⊆ Y

(mH×Y
SΓ ∩©mH)↓Y (A) = mY (A),

where mY is the mass function defined by (10).

Proof: (Sketch) Based on the fact that the quan-
tity mH(H) · mX

S (A) is allocated by the operation
(mH×Y

SΓ ∩©mH)↓Y to the set ((∪h∈H {h}×ΓA(h))∩(H×Y )) ↓
Y = ∪h∈HΓA(h) = ΓA(H), for all H ⊆ H and all A ⊆ X .

Let us now consider the setting of Section III-C. We assume
two sources S1 and S2, which provide uncertain information
mX

1 and mX
2 on X , respectively. Let mH12 = mH1×H2 be a

mass function representing our uncertain metaknowledge on
the sources. Let us further define two mass functions mHi×Y

iΓ

on Hi × Y , i = 1, 2, by, for all A ⊆ X:

mHi×Y
iΓ (∪h∈Hi {h} × ΓA(h)) = mX

i (A).

Lemma 2. We have, for all A ⊆ Y

(mH1×Y
1Γ ∩©mH2×Y

2Γ ∩©mH1×H2)↓Y (A) = mY (A),

where mY is the mass function defined by (11).

Proof: (Sketch) Shown in two steps.
First, we have mH1×Y

1Γ ∩©mH2×Y
2Γ = mH1×H2×Y

12Γ

with mH1×H2×Y
12Γ a mass function defined by

mH1×H2×Y
12Γ (∪h∈H1×H2

{
h↓H1

}
×

{
h↓H2

}
× (ΓA(h↓H1) ∩

ΓB(h↓H2))) = m1(A) ·m2(B), for all A,B ⊆ X .
Second, we have that the quantity mH(H)·m1(A)·m2(B) is

allocated by the operation (mH1×Y
1Γ ∩©mH2×Y

2Γ ∩©mH1×H2)↓Y

to the set ((∪h∈H1×H2

{
h↓H1

}
×

{
h↓H2

}
× (ΓA(h↓H1) ∩

ΓB(h↓H2))) ∩ (H × Y )) ↓ Y = ∪h∈H(ΓA(h↓H1) ∩
ΓB(h↓H2)) = ΓA,B(H), for all H ⊆ H1 × H2 and all
A,B ⊆ X .

Theorem 1. Under meta-independence of the sources, it is
equivalent to combine by BBF the uncertain information mX

1

and mX
2 or to combine by the unnormalized Dempster’s rule

each of these pieces of information corrected using BBC.

Proof: (Sketch) Let mH1 and mH2 represent our uncer-
tain metaknowledge on the behaviors of two sources S1 and
S2, respectively. Meta-independence of S1 and S2 is equivalent
to mH12 = mH1×H2 = mH1 ∩©mH2 , where mH12 = mH1×H2

represent our uncertain metaknowledge on the sources. Under
meta-independence of the sources, we have thus

(mH1×Y
1Γ ∩©mH2×Y

2Γ ∩©mH1×H2)↓Y

= (mH1×Y
1Γ ∩©mH2×Y

2Γ ∩©mH1 ∩©mH2)↓Y .

From the Fusion algorithm [7], we have

(mH1×Y
1Γ ∩©mH2×Y

2Γ ∩©mH1 ∩©mH2)↓Y

= (mH1×Y
1Γ ∩©mH1)↓Y ∩©(mH2×Y

2Γ ∩©mH2)↓Y .

The theorem follows then from Lemmas 1 and 2.



V. DISCUSSION

In [4], Mercier et al. proposed a general correction scheme,
where uncertain metaknowledge on the state of a source
S can be used to transform the uncertain information mX

S

provided by S into another mass function mX representing our
uncertainty on X . This metaknowledge is quantified by a mass
function mH on the space H = {h1, ..., hN} of possible states
of the source. The interpretation of those states h ∈ H is given
in [4] by transformations mX

h of mX
S : if the source is in state

h ∈ H and if it provides the information mX
S , then we must

conclude mX
h , where mX

h is some mass function on X . This
is formalized in [4] using conditional mass functions: we have
mX [{h}] = mX

h , where mX [{h}] represents our uncertainty
on X in a context where h holds.

It is proposed in [4] that our uncertainty mX on X , based
on information mX [{h}], h ∈ H, and metaknowledge mH be
computed by:

mX =
(
∩©h∈HmX [{h}]⇑H×X ∩©mH↑H×X

)↓X
, (12)

where mX [{h}]⇑H×X denotes the ballooning
extension of mX [{h}] on H × X , which is
obtained as mX [{h}]⇑H×X(B) = mX [{h}](A), if
B = {h} × A ∪ {h} × X , for some A ⊆ X , and
mX [{h}]⇑H×X(B) = 0 otherwise.

Theorem 2. [8] The mass function mX defined by (12)
depends only on mX

h , h ∈ H, and mH:

mX(A) =
∑
H

mH(H) · ( ∪©h∈HmX
h )(A), ∀A ⊆ X. (13)

Mercier et al. correction scheme (abbreviated MC) is
comparable to BBC in that it takes into account uncertain
metaknowledge on the source, which can be in N states.
A thorough comparison of these two correction schemes is
beyond the scope of this paper. Let us nonetheless point
out a difference between them by analyzing their capacity
to generalize DDC, which is a correction scheme where the
source can be in four states H = R × T = {h1, h2, h3, h4}
(see Section II-A). We have already seen that BBC generalizes
DDC. Let us now study whether MC generalizes DDC.

Let mX
S be the information provided by S on X . Let mH

be our metaknowledge on the source. Let mH be such that
mH({h1}) = 1. According to DDC, our uncertainty mX

on X is then such that mX = mX
S . For MC to generalize

DDC, mX computed using (13) must verify mX = mX
S when

mH({h1}) = 1. Since (13) reduces to mX = mX
h1

when
mH({h1}) = 1, we must have mX

h1
= mX

S . We may now con-
sider in turn the cases where mH is such that mH({h2}) = 1,
mH({h3}) = 1 and mH({h4}) = 1. According to DDC,
our uncertainty mX on X is then, respectively, such that
mX = mX

S , mX = mX
X and mX = mX

X , where mX
S is

the negation of mX
S [3], defined by mX

S (A) = mX
S (A) for

all A ⊆ X , and where mX
X is the vacuous mass function

defined by mX
X(X) = 1. This leads to mX

h2
= mX

S and
mX

h3
= mX

h4
= mX

X for MC to generalize DDC.

Suppose now that mH is a bayesian mass function, i.e., mH

is of the form mH({hi}) = pi, with
∑4

i=1 pi = 1. Computing
mX using DDC when mH is bayesian yields:

mX = p1 ·mX
S + p2 ·mX

S + p3 ·mX
X + p4 ·mX

X . (14)

For MC to generalize DDC, Equation (13) must reduce to (14)
when mH is bayesian and when the mass functions mX

hi
are

defined as in the previous paragraph, which is the case.
Assume now that mH is such that mH({h1, h2}) = 1.

Computing mX using DDC yields mX = mX
X . On the other

hand, Equation (13) reduces to mX = mX
h1

∪©mX
h2

. For MC to
generalize DDC, mX

h1
∪©mX

h2
must verify mX

h1
∪©mX

h2
= mX

X ,
which is incompatible with the requirement that mX

h1
and mX

h2

must verify mX
h1

= mX
S and mX

h2
= mX

S since mX
S ∪©mX

S 6=
mX

X in general. Hence, MC does not generalize DDC and is
thus different from BBC.

VI. CONCLUSION

In this paper, we have shown that under so-called meta-
independence of the sources, it is equivalent to combine
the belief functions provided by the sources using Dubois
and Denœux general combination rule or to combine by the
unnormalized Dempster’s rule each of the belief functions
corrected using Dubois and Denœux correction scheme. This
result was shown in a general setting, where source behavior
assumptions do not have to be restricted to relevance and
truthfulness, as is the case in Dubois and Denœux approach.
Further investigations into this general approach to belief
function correction and fusion, including application to real-
life problems, identification of particular cases, thorough com-
parison with other methods and further generalizations, are
currently under way and will be reported in future publications.
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