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Abstract— The evidential reasoning (ER) approach has been 

developed to support multiple criteria decision analysis 
(MCDA). It is based on Dampster’s combination rule for 
criteria aggregation and belief function for treating ignorance. 
In the original ER approach, however, alternative ranking 
depends on the accurate estimation of a value (utility) 
function, which may be difficult in certain decision 
environments. In this paper, the link and difference between 
the ER algorithm and Dampster’s combination rule are 
analysed first. A new alternative ranking method is then 
investigated as an integrated part of the enhanced ER 
approach. 
 
Keywords: evidence theory, multiple criteria decision 
analysis, evidential reasoning, alternative ranking. 

I. BASIC CONCEPTS OF THE EVIDENCE THEORY 
The evidence theory was first investigated in 1960’s 

(Dempster, 1967) and extended since 1970’s (Shafer, 1976). 
It has found wide applications in many areas such as 
artificial intelligence, expert systems, pattern recognition, 
information fusion, database and knowledge discovery, 
multiple criteria decision analysis (MCDA), audit risk 
assessment, etc. (Yager, 2004; Yang and Singh, 1994; 
McClean and Scotney, 1997; Denoeux and Zouhal, 2001; 
Beynon, 2002; Yang, 2001; Yang et al., 2002, 2006; Xu and 
Yang, 2006). In this section, the basic concepts of the belief 
function and Dempster’s combination rule are briefly 
introduced as a basis for introduction of the evidential 
reasoning approach in the next section.  

Suppose },,{ 1 NHHH L=  is a collectively exhaustive 
and mutually exclusive set of hypotheses, referred to as the 
frame of discernment. A basic probability assignment (bpa) 
is a mass function ]1,0[: →Θm , satisfying:  

 0)( =Φm  and ∑
⊆

=
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Cm 1)(            (1) 

with Φ  being an empty set, C  any subset of H, and Θ  the 
power set of H, consisting of all the subsets of H, or 

 
}},,,{,

},,{,},,{},{,},{,{

11

1211

HHH
HHHHHH

N

NN

−

Φ=Θ
LL

LL

         
    (2) 

A probability mass )(Cm  measures the degree of belief 
exactly assigned to C  and represents how strongly C  is 
supported by evidence. Probabilities assigned to all the 

subsets of H are summed to unity and there is no belief in 
the empty set. The probability assigned to H, or )(Hm , is 
referred to as the degree of ignorance. 

Associated with each bpa to C are a belief measure, 
Bel(C), and a plausibility measure, Pl(C), which are both 
mass functions: ]1,0[→Θ , defined by the following 
equations: 
 ∑

⊆

=
CB

BmCBel )()(  and ∑
Φ≠

=
BC

BmCPl
I

)()(     (3) 

)(CBel  represents the exact support to C  and its subsets, 
and )(CPl  represents the possible support to C . The 
interval )](),([ CPlCBel   can be seen as the lower and upper 
bounds of support to C . The two functions can be 
connected by the following equation 
 )(1)( CBelCPl −=              (4) 

where C  denotes the complement of C . The difference 
between the belief and the plausibility of a set C  describes 
the degree of ignorance of the assessment to C  (Shafer, 
1976).  

The core of the evidence theory is Dempster’s rule of 
combination by which evidence from different sources is 
combined or aggregated. The rule assumes that information 
sources are independent and uses the so-called orthogonal 
sum or intersection to combine multiple belief structures:  

 Lmmmm ⊕⊕⊕= L21             (5) 
where ⊕  is the orthogonal sum operator. With two pieces 
of evidence 1m  and 2m , Dempster’s rule of combination is 
defined as follows:  
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Note that Dempster’s rule provides a non-compensatory 
process for aggregation of two pieces of evidence and can 
lead to irrational conclusions in the aggregation of multiple 
pieces of evidence in conflict (Murphy, 2000), in particular 
in cases where multiple pieces of evidence are 
compensatory in nature. On the other hand, the ER approach 
(Yang, et al., 1994, 2001, 2002, 2006) introduced in the 
next section provides a compensatory evidence aggregation 
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process, which is different from Dempster’s rule in that it 
treats basic probability assignments as weighted belief 
degrees, includes the concept of the degree of 
indecisiveness, and adopts a normalisation  process for 
combined probability masses.  

II. THE MAIN STEPS OF THE ER APPROACH FOR MCDA 
A MCDA problem can be modelled using the following 

belief decision matrix. Suppose M alternatives (Al , l=1, …, 
M) are assessed on L criteria ie  (i=1, …, L) each on the 

basis of N common evaluation grades ),,1( NnHn K= , 
which are required to be mutually exclusive and collectively 
exhaustive. If alternative lA  is assessed to a grade nH  on a 

criterion ie  with a belief degree of )(, lin Aβ , this assessment 

is denoted by == ))(()( lili AeSAS    )),(,{( , linn AβH  ,1=n  

}, NK , which is a distributed assessment and referred to as 

a belief structure, where 0)(, ≥lin Aβ  and ∑ ≤ 1)(, lin Aβ . 

The individual assessments of all alternatives each on every 
criterion are represented by a belief decision matrix, defined 
as follows:  

MLlig ASD ×= ))((               (7) 

Suppose iω  is the weight of the ith criterion, normalised by 

 10 ≤≤ iω  and 1=∑
i

iω            (8) 

The ER approach has both the commutative and associative 
properties and as such can be used to combine assessments 
in any order. The ER aggregation process can be shown 
recursively, (Yang, 2001; Yang and Xu, 2002; Yang et al., 
2006), summarised as the following main steps.  
 
 Step 1: Assignment of the basic probability masses 

The basic probability masses for an assessment )( lf AS , 
denoted by fn, are generated by:  
  )(, lfnfn Af βω=  for Nn ,,1K= , )(, lfHfH Af βω=  

⎟
⎠

⎞
⎜
⎝

⎛ +−= ∑
=

Θ )()(1 ,
1

, lfH

N

n
lfnf AAf ββω       (9) 

In the D-S theory, fn may be interpreted as discounted belief. 
In MCDA, however, it is better interpreted as weighted 
belief as it means that in assessing an alternative lA  the fth 
criterion only plays a limited role that is proportional to its 
weight. Hf  represents the weighted ignorance in the 
assessment. Θf  is referred as to the degree of indecisiveness 
left by Sf(Al), representing the amount of belief that is not 
yet assigned to any individual or subset of grades by Sf(Al) 
alone but needs to be jointly re-assigned in accordance with 
all other assessments.  

Similarly, the basic probability masses gn for another 
assessment Sg(Al) are generated by 
 )(, lgngn Ag βω=  for Nn ,,1K= , )(, lgHgH Ag βω=   

⎟
⎠
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n
lgng AAg ββω         (10) 

 
 Step 2: Combination of the basic probability masses 

fn and gn can be combined to generate aggregated 
probability masses using the following probabilistic 
combination equations:  
 {Hn}: ( )nHHnnnn gffggfgfkm )()( ΘΘ ++++= ,  
     n=1, .., N               (11a) 
 {H}:  ( )HHHHH gfgfgfkm ΘΘ ++=        (11b) 
 {Θ }: ( )ΘΘΘ = gfkm              (11c) 
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In the above equations, mn and mH measure the magnitudes 
of the joint beliefs to the grade Hn and the frame of 
discernment H, respectively, generated by combining the 
two assessments Sf(Al) and Sg(Al), with mH thus representing 
the joint ignorance. Θm  is the degree of indecisiveness left 
by both Sf(Al) and Sg(Al), representing the amount of belief 
that needs to be re-assigned back to all subsets of grades 
proportionally after the combination process is completed. k 
measures the degree of conflict between Sf(Al) and Sg(Al). 
 
 Step 3: Generation of the combined belief degrees and 
distributed assessment 

If there are more assessments than two, step 2 can be 
repeated with each new assessment combined with mn, mH 
and Θm . After all assessments are combined in this 
recursive fashion, the finally combined probability masses 
need be normalised to generate the combined belief degrees 

nβ  and Hβ  by proportionally re-assigning Θm  back to all 
subsets of grades as follows:  

  {Hn}: 
Θ−

=
m

mnl
n 1

β , n=1, .., N          (12a) 

  {H}: 
Θ−

=
m

mHl
H 1

β              (12b) 

The combined assessment of the voice lA  is then given by 

 )},(),,(,),,(),,{()( 2211
l
H

l
NN

ll
l HHHHAS ββββ L=    (13) 

The above belief distribution provides a panoramic view 
about the combined assessment of the alternative lA  with 
the degrees of strength and weakness explicitly measured 
by the belief degrees. 

III. COMPARISON OF DEMPSTER’S RULE AND THE ER 
ALGORITHM BY EXAMPLE 

The ER algorithm has at least the following features: 1> 
taking into account the relative importance of evidence; 2> 
taking account of indecisiveness explicitly; 3> modelling 
ignorance explicitly by breaking unassigned probability 
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mass into two parts and treating them accordidngly; 4> 
generating rational conclusions in the combination of 
multiple pieces of evidence of a compensatory nature. To 
show these features, examine the following two pieces of 
evidence in conflict (Wang et al., 2006): 
 99.0)(1 =Am , 01.0)(1 =Bm , 0)(1 =Cm ;  
 0)(2 =Am , 01.0)(2 =Bm , 99.0)(2 =Cm . 
Before combination, the two pieces of evidence show that 
B  is almost an unlikely event as only a tiny probability of 
1% is assigned to it. After implementing Dempster’s 
combination rule, however, B  becomes a certain event and 
is assigned a probability of 100%, which seems irrational in 
terms of compensatory evidence aggregation, although this 
result may still be meaningful in terms of non-
compensatory aggregation. Table 1 shows the results 
generated using Dempster’s combination rule. 
 
Table 1 Combination of conflict evidence by Dempster’s 

combination rule 
Belief Structure {A} {B} {C} 
m1 0.99 0.01 0 
m2 0 0.01 0.99 
m1⊗ m2 (before normalization) 0 0.0001 0 
m1⊗ m2 (after normalization) 0 1 0 

 
On the other hand, the ER algorithm treats original 

evidence by a belief structure, assigns a relative weight to 
each piece of evidence, takes into account its indecisiveness 
explicitly, and normalises aggregated evidence to generate a 
combined belief structure. Suppose the relative weights of 
the two pieces of evidence are given by 1w  and 2w  
respectively, with 121 =+ ww . Table 2 shows the ER-
aggregated results which seem rational if the two pieces of 
evidence are compensatory in nature.  

 
Table 2 The ER combined belief degrees under different 

sets of relative weights 

Relative weights 
)(

)( 21

A
mm ⊗

 
)(

)( 21

B
mm ⊗

 
)(

)( 21

C
mm ⊗

w1=0, w2=1 0 0.01 0.99 
w1=0.2,  w2=0.8 0.058 0.01 0.932 
w1=0.4,  w2=0.6 0.305 0.01 0.685 
w1=0.5,  w2=0.5 0.495 0.01 0.495 
w1=0.6,  w2=0.4 0.685 0.01 0.305 
w1=0.8,  w2=0.2 0.932 0.01 0.058 
w1=1,  w2=0 0.99 0.01 0 

IV. A NEW RANKING METHOD FOR THE ER APPROACH 
While a distribution is useful to show the diversity of an 

assessment, it is not convenient for ranking alternatives. On 
the other hand, the mean value of a distribution is usually 
used as a mean evaluation rating of an alternative. However, 
the mean value of a distribution depends on how the 
assessment grades are quantified. Suppose the grade Hn is 

quantified by u(Hn). In a most general case, u(Hn) should 
not be a single fixed value but a variable interval, denoted 
by ][ nn ba  ,  with nn ab ≥  and na  and nb  not fixed. Suppose 
the grade Hn+1 is also quantified by a variable interval 

][ 11 ++ nn ba  , . Then, Hn+1 is said to be preferred to Hn if and 
only if nn ba  >+1  for n = 1,…, N-1. Without loss of 
generality, suppose u(Hn) is normalised so that 01 =a  and 

1=Nb . 
In the presence of ignorance, the lower and upper bounds 

of the belief degree to which an alternative lA  is assessed to 

Hn is given by l
nβ  and )( l

H
l
n ββ +  respectively. Hence, the 

mean value of a distribution is characterised by a maximum 
and minimum value given as follows:  

 ∑
=

++=
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n
n
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n
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l
l HuHuASu
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11min )()()())(( βββ       (14) 
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     (15) 

Then, an alternative lA  is preferred to another alternative 

kA  if ))((min lASu ≥ ))((max kASu .  
The pairwise comparison of lA  and kA  can be made 

directly using equations (14) and (15) if the utilities of the 
grades are given precisely by the decision maker, or fixed to 
u(Hn)= na = nb . Otherwise, we can construct the following 
linear programming model for comparing lA  with kA : 
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In (16b), δ  is a small non-negative real number that 
should be large enough to make the difference between two 
adjacent grades significant and meaningful, with 

)1/(10 −≤≤ Nδ . If the optimal value of formulation (16a) 
for a sufficiently small δ  is negative, or 0<klσ , it will 
mean that there is always ))((min lASu > ))((max kASu  in any 
permissible ways that the assessment grades are quantified, 
as bounded by dΩ , so that )( lAS  is least favoured and 

)( kAS  is most favoured. Hence, 0<klσ  means that lA  is 
evidentially preferred to kA . Otherwise, there will exist no 
definite relation between lA  and kA , and assumptions 
would have to be made or preference conditions would need 
to be added to (16b) in order to differentiate between lA  
and kA , which may be referred to as assumption-based or 
preference-based comparison. Note that from the evidential 
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preference relations between alternatives a robust partial 
ranking can be generated.  

In general, the larger the value of δ , the more powerful 
formulate (16a) is to differentiate alternatives. For example, 
formulation (16a) will have a unique solution of 

=== nnn baHu )( )1/()1( −− Nn  if δ  is assumed to take 
the maximum permissible value of )1/(1 −N , which is 
equivalent to assign a single fixed value to each grade so 
that grades are evenly distributed in the utility space. On the 
other hand, a grade may be quantified to a fixed utility 
interval rather than to a fixed single utility. For example, 
each grade may be quantified to an equal utility interval so 
that )1/(1)( −=− Nba nn , which is equivalent to assign 
δ =0, 01 =a , )1/()1(1 −−==+ Nnba nn  for 1,,1 −= Nn L , 
and 1=Nb . Anyway, if it is necessary to make such 
assumptions for ranking alternatives, they should be made 
adequately to suit specific decision situations.  

Many preference conditions may be added to formulation 
(16b) for differentiating alternatives. For example, if an 
improvement from a low grade is more appreciated than 
from any better grade, then the following conditions could 
be added to formulation (16b)  
 )()()()( 121 +++ −≥− nnnn HuHuHuHu   
  for n=1, …, N-2               (17) 

Adversely, if improvement from a high grade is more 
appreciated than from any lower grade, then the following 
conditions could be added to formulation (16)  
 
 )()()()( 112 nnnn HuHuHuHu −≥− +++   
 for n = 1, …, N-2                (18) 

On the other hand, if the degree of improvement from a 
grade to an adjacent better grade is bounded, the following 
conditions may be added to formulation (16b), with τ  
being a bounding index and 1≥τ , 

  τ
τ

≤
−
−

≤
+

++

)()(
)()(1

1

12

nn

nn

HuHu
HuHu  for n = 1, …, N-2     (19) 

V. A CASE STUDY TO SHOW THE NEW RANKING METHOD 
A case study in new product development is presented to 

demonstrate the application of the ER approach coupled 
with the new ranking method. In this case study, thousands 
of data sets generated from various surveys were used to 
formulate a number of decision models for assessing over 
160 customer voices for a world-leading car manufacturer. 
A customer voice is a description, stated in the customer’s 
own words, of the benefit to be fulfilled by a product or 
service. It is not appropriate to present all the models in 
detail in this paper due to the limited space and the 
confidentiality. In this section, the generic structure and a 
typical small scale model will be discussed to illustrate the 
ER approach and the new ranking method for the 
prioritisation of customer voices. 

A. Problem description  
The hierarchy for assessing four voices using evidence 

generated from two surveys is shown in Figure 1, which is 
the main window of the decision support system named IDS 
developed to implement the ER approach. This main 
window includes a bottom-right tree view for displaying a 
hierarchy of assessment criteria, a bottom-left list view for 
listing all voices to be assessed, a menu bar for listing all the 
IDS functions, and a shortcut bar for quick access to 
frequently used IDS functions. In Figure 1, there are seven 
criteria at the bottom of the hierarchy, which are derived 
from the evidence generated from Survey 1 and Survey 2. 
Survey 1 has five bottom-level criteria and Survey 2 has two 
bottom-level criteria.  

 

 
Figure 1  IDS main window for voice assessment  

Given the nature of the two surveys, weights are 
suggested by the company staff in such a way that Survey 1 
is regarded to be more important than Survey 2. The weight 
for Survey 1 was initially judged to be twice as large as that 
for Survey 2. The weights for Survey 1 and Survey 2 are 
normalised to ⅔ and ⅓ respectively, which are subject to 
sensitivity analysis. The other criteria in the same groups of 
the hierarchy are all equally weighted in this case study.  

The original data sets generated from the two surveys 
were pre-processed into the distributions on the survey 
scales. The pre-processed data are then transformed to the 
distributed assessments on the common priority scale {NO, 
LOW, AVERAGE, HIGH, TOP}, which are used as 
evidence for assessing the four voices on the seven bottom 
level criteria, summarised in a belief decision matrix as 
shown in Table 3. The numbers in the brackets are belief 
degrees associated with the evaluation grades on the 
common scale in the order of {NO, LOW, AVERAGE, 
HIGH, TOP}.  

The “Unassigned Priority” (or Unknown) is not explicitly 
given in Table 3 and can be calculated by one minus the sum 
of the five numbers in an assessment. In the assessment of 
Voice B on “Criterion (2, 2)”, for example, the total belief 
degree is 0.96, which means that 4% of the responses are 
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missing from the original Survey 2 data. The missing 
information (ignorance) of 4% recorded in the belief 
decision matrix is preserved in the ER aggregation process.  

Table 3 A Belief Decision Matrix for Assessing Voices 
Voice Criterion 

A B C D 

Criterion (1, 1) 
{0.01, 0.01, 
0.05, 0.25, 

0.69} 

{0, 0.01, 
0.04, 0.29, 

0.66} 

{0, 0.03, 
0.13, 0.35, 

0.49} 

{0.00, 0.01, 
0.13, 0.46, 

0.39} 

Criterion (1, 2, 1) {0, 1, 0, 0, 
0} 

{0, 0, 0, 0, 
1} 

{0, 0, 0, 0, 
1} 

{0, 0, 0, 0, 
1} 

Criterion (1, 2, 2) {0, 1, 0, 0, 
0} 

{1, 0, 0, 0, 
0} 

{0, 0, 0, 0, 
1} 

{0, 0, 0, 0, 
1} 

Criterion (1, 3) {0, 0, 0, 0, 
1} 

{0, 0, 0, 0, 
1} 

{0, 0, 0, 0, 
1} 

{0, 0, 0, 0, 
1} 

Criterion (1, 4) 
{0.15, 0.06, 
0.26, 0.06, 

0.47} 

{0.14, 0.06, 
0.27, 0.06, 

0.47} 

{0.32, 0.07, 
0.35, 0.07, 

0.19} 

{0.16, 0.07, 
0.32, 0.07, 

0.38} 

Criterion (2, 1) {0.91, 0, 0, 
0, 0} 

{0, 0, 0, 0, 
0.98} 

{0, 0, 0, 0, 
0.98} 

{0.97, 0, 0, 
0, 0} 

Criterion (2, 2) 
{0.01, 0.05, 
0.13, 0.21, 

0.51} 

{0.01, 0.04, 
0.10, 0.17, 

0.64} 

{0.04, 0.07, 
0.13, 0.18, 

0.56} 

{0.02, 0.05, 
0.13, 0.21, 

0.56} 

B. Voice ranking and sensitivity analysis  
In this section, we use the model as discussed in the 

previous sub-section to demonstrate how to apply the ER 
approach and the IDS software for aggregating assessments 
from the bottom level criteria of the hierarchy progressively 
to the top level voice assessment, ranking the four voices, 
and conducting sensitivity analysis. The following figures 
were all generated using the IDS software. In the case study, 
the original survey datasets were provided in Excel files. 
The data were transformed to the common priority scale 
using Matlab programmes. The generated data were then 
read into the IDS software through its data input interface.  

For each voice, the ER approach is employed to first 
combine the assessments on the two bottom-level criteria 
“Criterion (1, 2, 1)” and “Criterion (1, 2, 2)”, resulting in an 
aggregated assessment on the higher level criterion 
“Criterion (1, 2)”. The assessments on Criterion (1, 1), 
Criterion (1, 2), Criterion (1, 3) and Criterion (1, 4) are then 
combined to generate an aggregated assessment on Survey 
1. Similarly, the assessments on Criterion (2, 1) and 
Criterion (2, 2) are combined to generate an aggregated 
assessment on Survey 2.  

The initially aggregated assessments on the two surveys 
are then further combined to generate an assessment for each 
voice on the overall criterion “Voice assessment” as the 
following overall distributed assessments:  
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If the five grades are quantified so that a change from a 
low grade is more appreciated than from a higher grade, 
then we will have a pseudo-concave utility function for the 
qualitative grades, for example as shown in Figure 2. Given 
the fixed pseudo-concave utility function as shown in Figure 
2, the four voices are ranked as shown in Figure 3, or Voice 
C f  Voice B f Voice D f  Voice A, where f  means “is 
preferred to”.  
 

 
Figure 2 Pseudo-concave utility function 
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Figure 3 Pseudo-concave ranking 

 
In the above ranking, we assumed that the precise utilities 

of all the grades had been estimated. Such an assumption is 
questionable in that the robustness of the ranking generated 
on the basis of the assumption needs to be examined. In 
general, as discussed in the previous section, the utility of a 
qualitative grade should be a variable interval but not fixed 
to a single value, unless the decision makers can provide 
sufficient and precise preference information to estimate a 
unique utility function for all assessment grades. In what 
follows, we employ the generic ranking method proposed in 
the previous section to generate the ranking of the four 
voices and investigate its robustness without making the 
above strict assumptions unnecessarily.  
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Take the pairwise comparison of Voice C and Voice A for 
example. From their overall assessments, the minimum 
mean utility of Voice C and the maximum mean utility of 
Voice A are given as follows:  

 
)(7913.0
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The model for comparing Voice C with Voice A is then 
given by 
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Set δ  to be a sufficiently small positive number that 
makes differences between the grades meaningful, for 
example 025.0))15/(1(1.0 =−×=δ . Then, the optimal 
value of the linear programming problem is given by ACσ =-
0.0192, which means that it is evidentially true that Voice C 
f  Voice A.  

Similarly, we can construct a linear programming model 
for comparing each pair of the four voices. The results are 
summarised in Table 4. We can then generate the evidential 
preference relations between certain pairs of voices as 
shown in Table 5, resulting in the following partial 
evidential ranking of the voices: Voice C ~ Voice B f Voice 
D f  Voice A, where ~ means “is equivalent to”.  
 

Table 4 Pairwise comparison indices of the voices 
Voice A Voice B Voice C Voice D 
AAσ =0.000 ABσ =-0.017 ACσ =-0.019 ADσ =-0.001

BAσ =0.246 BBσ =0.000 BCσ =0.003 BDσ =0.118 

CAσ =0.251 CBσ =0.043 CCσ =0.000 CDσ =0.117 

DAσ =0.175 DBσ =-0.006 DCσ =-0.009 DDσ =0.000 
 

Table 5 Evidential partial ranking of the voices 
Voice A Voice B Voice C Voice D 

─ Bf A Cf A Df A 
─ ─ ─ ─ 
─ ─ ─ ─ 
─ Bf D Cf D ─ 

 

To differentiate Voice B from Voice C, additional 
preference information need be provided. For instance, if the 
utility function of the assessment grades is assumed to be 
generically pseudo-concave, then the following linear 
programme can be constructed:  

   
)17(..

))(())((max minmax

⊕Ω∈=
−=

dts
CSuBSu

      X
   BCσ

 

The optimal value of the above problem is given by BCσ =-
0.0019, which means that Voice C f  Voice B given the 

assumption of a generic pseudo-concave utility function. If 
BCσ  were still non-negative, then more strict preference 

information would be needed. If precise grade utilities are 
estimated, a complete ranking of the voices can always be 
generated. For this case study, however, such strict 
preference information was not needed. 

VI. CONCLUSION 
The ER approach provides another intersection process 

for compensatory evidence combination, complementary to 
Dempster’s rule of non-compensatory combination. The ER 
algorithm is different from Dempster’s rule in that it treats 
basic probability assignments as weighted belief degrees, 
includes the concept of the degree of indecisiveness, and 
adopts a normalisation process for combining probability 
masses. The proposed ranking method provides a generic 
process to support multiple criteria decision analysis. 
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