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Abstract—Approximating a belief function (with a probability
distribution or with another belief function with a restricted
number of focal elements) is an important issue in Dempster-
Shafer Theory. The reason is that such approximations are really
useful in two different situations: (1) decision making and (2)
computational saving. In this paper, we propose to consider
the definition of a proxy for a belief function as the result of
the Dempster’s combination of two belief functions: The first
one is the belief function to approximate and the second one
is a Bayesian belief function which encodes a meta-information
describing the support of the approximation (i.e. the set of the
potential focal elements of the proxy).
Keywords: belief function theory, Dempster-Shafer The-
ory, Bayesian approximation, k-additive belief functions,
hidden Dempster’s combination

I. I NTRODUCTION

Dempster-Shafer Theory [1] (as well as several of its
extensions, such as [2]) is a very popular tool to handle impre-
cision and uncertainty in knowledge discovery. Nonetheless,
two major drawbacks have prevented its early and complete
spreading into other communities with similar scientific goals,
such as statistic, data mining, Bayesian machine learning,etc.

The first one is the computational burden [3]: In the
formalism of belief functions, it is necessary to deal with a
distribution defined on a powerset rather than a set. Then,
the computational cost grows in an exponential manner with
respect to the size of the state-space. Hence, more compact
representations are sought, i.e. by means of belief functions
with a restricted number of focal elements.

The second drawback is the lack of intuitive significance
for a belief function with several focal elements of different
cardinality. As explained in [4], [5], it is not trivial for an
expert to capture the very meaning of a each of these focal
elements. Consequently, decision making in such a context is
not intuitive. On the other hand, there are many representations
which are easier to handle (such as probabilities or necessity
measures, etc.), and a popular solution is to convert the belief
function into another belief function with a more intuitive(and
often more compact) set of definition.

Finally, in spite of their differences, these two problems
have led to the same question: How can a belief function
be approximated with another more compact belief function?
For obvious reasons, these approximations are often Bayesian
belief functions, but other kinds of proxies are also interesting.

In this paper, the investigation of such proxies is pushed
further in a particular direction, inspired by an article of
R. Haenni [6]. He shows that several popular operators of
Dempster-Shafer Theory can be expressed in terms of a
Dempster’s combination with a special belief function. He
considers several operators: Discounting, disjunctive combina-
tion, refinement, etc. but there is no study on approximating
operators. They are considered in this paper.

Section 2 gives a the state-of-the-art containing a brief in-
ventory of the Bayesian/non-Bayesian proxies in the literature
and a summary of the framework of [6]. Then, this frame-
work is used in Section 3 to redefine an already well-known
Bayesian proxy (the relative plausibility). It is explained why
the contextualization of this result into Haenni’s works opens
new issues: it allows for the generalization of this proxy in
several non-Bayesian ways. Finally, Section 4 is an outlook
on future works.

II. STATE OF THE ART

Let X be a variable which takes its value onΩX =
(x1, x2, . . . , xN ). The piece of information[I] available1 on
the outcome ofX is equivalently encoded in the four following
functions defined onP(ΩX): The mass functionm[I]

X , the
belief function Bel

[I]
X , the plausibility functionPl

[I]
X and

the commonality functionq[I]
X . It is possible to switch from

one form to another by means of sum functions or with
Möbius inversions [7]. The core of a mass function is the
union of its focal elements. Here, we callsupport the set
of potential focal elements according to the membership to
a dedicated familly of mass functions2. The core and the
support are notedF

(

m
[I]
X

)

= {F1, . . . , Fc} , c ≤ 2|ΩX |, and

S
(

m
[I]
X

)

= {S1, . . . , SC}. Of course, we have

F
(

m
[I]
X

)

⊆ S
(

m
[I]
X

)

.

A proxy is defined by an operatorO that maps the set of
mass functions onP(ΩX) onto the same set, so that the image

1Depending on the context, the piece of information[I] may correspond to
(1) a partial knowledge derived from sample data, (2) the subjective opinion
of an agent or (3) the fusion of several other pieces of information.

2Hence, this definition is not unique, and it is mainly used to simplify the
notion of proxy. For instance, the support of any Bayesian belief function is
the set of all the singletons, eventhough some of these singletons are not focal
elements : no mass is associated to non-singleton, and a mass may potentially
be associated to any of the singletons.



of the mapping (the proxy) has a smaller support:
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A “good” proxy is defined so that the piece of information
[I] expressed in the original mass function is “well preserved”
in the proxy. Depending on the authors, this “preservation”
is impersonated by differentconsistency propertiesthat the
proxy must verify: Commutativity with respect to Dempster’s
combination [8], convex linearity [9], dominance property
[10], consistency with upper and lower bounds (for Bayesian
proxies) [11], etc. In this paper, the commutativity with
Dempster’s combination plays a major role, but it does not
diminish the interest of other consistency properties.

First, the most popular Bayesian approximations of a belief
function are recalled3.Then, non-Bayesian proxies are con-
sidered. Finally, we summarize the procedure described in
[6] by Haenni to uncover Dempster’s combinations in several
operators of belief function theory.

A. Bayesian proxies

Given a mass functionm[I]
X , thepignistic probabilitydistri-

bution is defined as :

m
[BetP ]
X (xi) =

1

1 − m
[I]
X (∅)

∑

xi∈A
A⊆ΩX

m
[I]
X (A)

|A|
∀xi ∈ ΩX

The corresponding operator is called thepignistic transform.
Because it does not commute with Dempster’s combination,
the pignistic probability is not used as a computationally
efficient proxy. Nonetheless, its convex linearity [9], itssuper-
position with the barycenter of the dominating probabilities
[12] and its obvious interpretation throughout the insufficient
reason principle4 makes it a major tool for decision making
in the Transferable Belief Model [2]. Finally, Daniel [16]
proposed using a mass functionm

[W]
X to weight the pignistic

transform according to prior knowledge.∀xi ∈ ΩX :

m
[WBetP ]
X (xi) =

1

1 − m
[I]
X (∅)

∑

xi∈A
A⊆ΩX

m
[W]
X (xi)

∑

B∈A m
[W]
X (B)

m
[I]
X (A)

|A|

The only proxy which is as popular as the pignistic proba-
bility is simply defined by normalizing the values ofPl

[I]
X of

singletons so that they sum overΩX up to 1.∀xi ∈ ΩX :

m
[RelP l]
X (xi) =

Pl
[I]
X (xi)

∑

xj∈ΩX

Pl
[I]
X (xj)

=
Pl

[I]
X (xi)

∑

A⊆ΩX

m
[I]
X (A) · |A|

This proxy is really interesting as it is both computationally
efficient and useful for decision making: It was first introduced

3In [3], “Bayesian approximation” refers to a particular proxy (the relative
plausibility). In this paper, a Bayesian approximation is the result of an
approximation operator that maps the set of belief functions onto the set
of Bayesian belief functions (i.e. the support of the Bayesian proxy isΩ).
Hence, Voorkraak’s proxy is one among the various Bayesian approximations
we consider.

4The insufficient reason principle helps to understand the intuition of the
pignistic transform, but it does not justify it, as stressed by Smets [9].

in a formal way in 1989 [3] by Voorbraak as a normalization
up to 1 of the values of the commonality of the singletons5,
but its use for decision making came earlier, as the problem
of finding the most plausible configurationwas previously
addressed (e.g. [13], [14]). In spite of its lack of dominating
properties, it has been widely studied by various authors and
widely justified. Hence, it has numerous names in the litera-
ture, such asBayesian approximation[3] (1989),proportional
plausibility probability [15] (2001),plausibility transform[8]
(2003),Cautious probabilistic transform[16] (2006),relative
plausibility of singleton[10], etc.

In a similar logic, it is possible to derive a proxy by
normalizing the belief of singletons. As long as∃F ∈ F(m

[I]
X )

such that|F | = 1, it is defined by:

m
[RelBel]
X (xi) =

Bel
[I]
X (xi)

∑

xj∈ΩX

Bel
[I]
X (xj)

∀xi ∈ Ω

Basically, using this proxy means dropping the focal elements
with cardinality greater than or equal to 2. This proxy has
several interesting properties: In [15] (2001), Sudano briefly
introduced it as theproportional belief probability. Then,
it was introduced [19] (2003) and extensively studied [16]
(2006) by Daniel as thedisjunctive probabilistic transform.
In the latter, Daniel also briefly discussed the interactions of
several transforms with belief and plausibility functionsfrom
a geometric point of view. Meanwhile, Cuzzolin invested in
a deeper way the geometric properties of the space of belief
functions [10] and used them a few years later to derive the
existence of this proxy, that he called therelative belief of
singletons[17], [18] (2008). Interestingly enough, this proxy
has alternatively been proposed for decision making and for
computational saving.

In a similar way, Cuzzolin derived from geometric con-
siderations theorthogonal projectionand the intersection
probability [10]. Theprobability deficiency proportional plau-
sibilities, was very briefly introduced by Sudano [15] and
shares important similarities with the intersection probability.
Both of them have the following structure:

Bel
[I]
X (xi) +



1 −
∑

xj∈ΩX

Bel
[I]
X (xj)



 ·
E

[I]
X (xi)

∑

xj∈ΩX

E
[I]
X (xj)

∀xi ∈ ΩX , with E
[I]
X = Pl

[I]
X for Sudano’s proxy, and with

E
[I]
X =

(

Pl
[I]
X − m

[I]
X

)

for Cuzzolin’s.
Finally, Daniel [16] and Sudano [15] proposed several other

proxies. A part of them share a structure similar to the previous
ones, but the probability masses are weighted with the mass
values (in order to be consistent with upper and lower bounds
[11]). The proliferation of various Bayesian proxies shows
that the search for new proxies and a better understanding of
their definition are real issues. In a larger perspective, some

5Pl
[I]
X

andq
[I]
X

are equivalent for singletons.



authors consider the definition of Bayesian proxies for more
general distributions than belief functions, such as imprecise
probabilities [20], or even fuzzy measures [21].

B. Non-Bayesian proxies

Up to now, we have only considered Bayesian proxies, as
(1) their natural understanding, (2) their compactness and(3)
their obvious relation to decision making make them rather
popular. On the other hand, non-Bayesian proxies are also
interesting and have been investigated.

The sets of the strong inner (resp. outer) approximations
have extensively been studied. In [22], Dubois and Prade
proposed to consider these two sets and to seek for two mass
functions which:

• are consonant (the focal elements are such thatFi ⊆
Fj ∀0 < i < j ≤ c with c ≤ |ΩX |),

• minimize some distance criterion with the original belief
function.

This leads to the definition of theminimal consonant outer
approximationand themaximal consonant strong inner ap-
proximation. These proxies are particularly interesting as they
can be seen as fuzzy sets or as necessity measures. Unfortu-
nately, these approximations do not commute with Dempster’s
combination.

In [25], Denœux described the construction of an inner
(resp. outer) strong approximationm[I]

X (resp. m[I]
X ) as the

result of an inner (resp. outer) reduction (a reduction is a
particular mapping fromΩX onto a coarser frameΘ(ΩX),
whereΘ is a partition ofΩX ). To lose as little information as
possible,Θ(ΩX) is defined as the result of a hierarchical clus-
tering ofΩX . Then, in [26], it is shown thatm[I]

X (resp.m[I]
X )

commutes with disjunctive (resp. conjunctive) combinations,
and that they form an efficient basis with the Fast Möbius
Transform [27] to approximate the result of a combination.

Then, there is the setk-additive belief functions [5]. Ak-
additive belief function has no focal element of cardinality
> k, and at least one focal element of cardinalityk. The set
of k-additive belief functions dominating a dedicated fuzzy
measure is described in [21]. In [23], [24], we proposed
to generalize the pignistic transform so that, its result is
a k-additive belief function instead of a Bayesian (or 1-
additive) belief function,∀k ≤ N chosen by the user. As the
pignistic transform, this generalization does not commutewith
Dempster’s combination. Thus, its main interest is to provide
a decision making framework where it is possible to compare
imprecise and precise decisions.

Finally, in [4], Tessem described the following algorithm
to approximate a mass function:(1) Sort the focal elements
by decreasing mass. (2) Remove iteratively the focal element
with the smallest mass until a criterion on the number of focal
elements or on the mass discarded in the process is reached.
(3) Normalize the remaining masses to 1. The mass function
obtained is the proxy. It is justified by the following concerns:
As the focal elements with small mass become immaterial
during a succession of Dempster’s combinations, deleting them

at the very beginning is not problematic, but computation
saving.

C. Hidden Dempster’s combinations

In [6], Haenni proposes to uncover Dempster’s combina-
tions in the process of applying an operator6 O to a mass
function m

[I]
X . The application of the operator is seen as

a combination of two mass functions: the first one is the
belief function to processm[I]

X . The second one is a mass
function that encodes a meta-information[M] corresponding
to the semantics of the operatorO. Let us callY the variable
on which [M] is informative. Here is the description of the
process from [6]:

1) Define m
[M]
Y and extend it to(X,Y ). Depending on

the relationship betweenX and Y this extension may
be a vacuous onem[M]↑(X,Y )

Y or a ballooning one:
m

[M]⇑(X,Y )
Y . Let us use the generic notationm[M]

(X,Y ).
2) Express[I] as a piece of information on the outcome of

(X,Y ) rather than onX, so that it is possible to define
m

[I]
(X,Y ). Once again, this extension may be a vacuous

or a ballooning one7.
3) Compute the Dempster’s combination of these two

masses and marginalize the result on the appropriate8

spaceZ.

The result of this procedure corresponds to the result of
the application of the operatorO[M]. Thus, if we call[R] the
resulting piece of information, one has:

O[M]
(

m
[I]
X

)

= m
[R]
X =

[

m
[I]
(X,Y ) ⊕ m

[M]
(X,Y )

]↓Z

Let us note that a similar method is used in [28] to provide
a meaning toα-junctions [29].

III. D EFINING PROXIES BY MEANS OFDEMPSTER’ S

COMBINATION

In this work,O is supposed to be an approximating operator.
If O can be expressed in terms of a Dempster’s combination,
then, it obviously commutes with it. Therefore, the approx-
imating operators which do not commute with Dempster’s
combination are obviously not in the scope of this paper (such
as the consonant proxies, as the consonant structure is broken
by Dempster’s combination [22]).

In this section, we apply Haenni’s procedure to provide a
definition of several proxies. First, some Dempster’s combina-
tions are uncovered in several well-known proxies. Then, we
consider several generalization of the relative plausibility in
the framework of Haenni.

6Several operators are considered: Discounting, disjunctive combination, re-
finement, coarsening (among which inner and outer reductions)and enlarging
the frame to the open world assumption.

7In [6], it is a ballooning extension for the discounting operator and
combinations, and a vacuous extension for coarsening/refinement operators.

8Most of the time,Z = X.



A. Hidden combination in approximating operators

In [3], it is established that the relative plausibility com-
mutes with Dempster’s combination. In [11], the relative
plausibility in the case of frames of two elements is introduced
as the result of a given homomorphism on a Dempster semi-
group. On frames of more than 2 elements, the Dempster semi-
group structure no longer holds, but it is demonstrated that
its main properties still holds: The relative plausibilityis the
result of a Dempster’s combination with the following uniform
Bayesian mass function:

m
[Uni]
X (xi) =

1

N
, ∀i ≤ N

m
[Uni]
X (.) = 0 otherwise.

It is almost trivial to rewrite the proof of [16] in the
framework of Haenni: Obviously, one has,ΩY = ΩX and
m

[M]
Y = m

[Uni]
X . Thus, the combination, as well as the

following marginalization described in Haenni’s procedure
are completely straightforward. In this setting, here is an
interpretation for the meta-information[M]: It is a list of
the focal elements which are expected for the proxym

[RelP l]
X ,

weighted according to their respective importance (the uniform
distribution means they are all as much important).

It is possible to generalize this proxy by using a different
meta-information[M] which is not necessarily[Uni]: The
same focal elements are considered, but some of them are
promoted with respect to the others. Then, the correspond-
ing Bayesian mass functionm[M]

X does not read uniform
distribution. It is straightforward to establish the following
proposition:

Proposition 1: Let m
[M]
X be a Bayesian mass function and

m
[I]
X be a mass function. We define the mass function

m
[RP l]
X = O[M]

(

m
[I]
X

)

= m
[M]
X ⊕ m

[I]
X

m
[RP l]
X (A) = 0, ∀A / |A| 6= 1, and∀xi ∈ ΩX , we have:

m
[RP l]
X (xi) = K[RPl] · q

[M]
X (xi) · q

[I]
X (xi)

= K[RPl] · m
[M]
X (xi) · Pl

[I]
X (xi)

whereK[RPl] =





∑

xj∈ΩX

m
[M]
X (xj) · Pl

[I]
X (xj)





−1

O[M] is an Bayesian approximating operator. Hencem
[RP l]
X is

a Bayesian approximation ofm[I]
X . Moreover, in the particular

case wherem[M]
X is uniform,O[M] corresponds to the plau-

sibility transform (m[RP l]
X is the relative plausibility ofm[I]

X ).

A proof of a more general theorem is given in section3.C,
but the idea is to compute the Dempster’s combination by the
use of the communalities, and by using the fact thatq andm
are equal for Bayesian mass functions. Moreover, it is easy to

see that, in casem[M]
X (xi) = 1

|F| = 1
N

,∀xi ∈ ΩX , we have,

|F|

K[RPl]
=

∑

xj∈ΩX

Pl
[I]
X (xj)

which leads to the particular case of the relative plausibility.
By now, let us note that the role ofm

[M]
X is also really close

to the one ofm[W]
X in the [W]-weighted pignistic transform:

The piece of meta-information is used both as a manner to
encode the approximating operator (the plausibility transform)
and as a prior knowledge to weight the various masses of the
proxy.

Let us now consider the outer/inner proxies which commute
with Dempster’s combination. In [6], it is also shown that inner
and outer reductions are operators which correspond to hidden
Dempster’s combinations. Then,m

[I]
X andm

[I]
X can obviously

be described in terms of hidden Dempster’s combinations.
In any of these cases, the meta-information[M] depicts the
structure of a coarseningΘ (see [6]). Thus,Y corresponds to
Θ(ΩX). One has:

m
[M]
(X,Y )





⋃

θi∈Θ(ΩX)

θi × {fΘ(θi)}



 = 1

where fΘ is a function that maps each elementθi of
the partition Θ(ΩX) to the corresponding set of elements
{xi,1, xi,2, . . . , xi,j} of ΩX .

B. Interesting structures

A major goal of this paper is to generalize the relative
plausibility. In the previous section, the plausibility transform
is interpreted in Haenni’s framework, and it leads to a first
generalization,O[M], which remains Bayesian. We aim at
being even more general, so that non-Bayesian generaliza-
tions of the relative plausibility are defined. So far, we have
intuitively understood that[M] describes which elements of
P(ΩX) potentially belong to the core of the proxy. In fact,
the support of the proxy depends on the core ofm

[M]
X :

S
(

m
[RP l]
X

)

= F
(

m
[M]
X

)

In this subsection, we discuss the alternative structure for the
core of the proxy:[M] is replaced by another piece of meta-
information [M′] and we discuss the structure of the core of
the mass function which encodes[M′].

From the previous section,m[M′]
Y is conveniently encoded

in a Bayesian structure. On the other hand, we need to specify
some focal elements which are not singletons, as the proxy
is not bound to be Bayesian anymore. Then, it is natural to
consider thatm[M′]

Y is defined onΩY , where ΩY is a set
of atomsyi, each of them representing a particular subset of
P(ΩX). As a consequence,ΩY is made of2|ΩX | elements. Let
us note as♦Ai

= ♦{xi1
,xi2

,...xij}
an atomic elementyi of ΩY

which corresponds to the focal elementAi =
{

xi1 , xi2 , ...xij

}

with j ≤ N . As theyi’s are seen as atoms, there is no inclusion
relation amongst them, as with classical focal elements. Thus,



m
[M′]
Y remains Bayesian, but any type of support for the

proxy can be described. Moreover, it is possible to specify
in [M′] the presence of a potential focal elementSi of great
cardinality, without implying the presence of the potential
focal elements which are included inSi (on the contrary to
what would occur by using Dempster’s combination with a
non Bayesian mass function).

The most straightforward generalization of the relative plau-
sibility of singletons is to consider focal elements which are
k-uples (with2 ≤ k ≤ N ) rather than singletons. In such a
case,[M′] reads “All and only thek-uples inΩX are potential
focal elements for the proxies”. To remain pedagogical, letus
only consider uniformly distributed mass functions9. In such
a case, the support of the proxy is made of

(

N
k

)

= N !
k!(N−k)!

potential focal elements of cardinalityk (even if m
[M′]
Y is

Bayesian). We have:

m
[M′]
Y (♦Ai

) =
k!(N − k)!

N !
∀♦Ai

∈ ΩY , / Ai ⊆ ΩX , |Ai| = k

m
[M′]
Y (.) = 0 otherwise

A more interesting generalization is to considerk-additive
belief functions, such as those recalled in Section 2. Of course,
m

[M′]
Y is still Bayesian, and even if we only consider the case

of uniform distribution, we have:

m
[M′]
Y (♦Ai

) =
1

|F|
∀Ai ∈ ΩX , |Ai| ≤ k

m
[M′]
Y (♦Ai

) = 0 otherwise

Another generalization proposed by Cuzzolin [10], is to
consider that the cardinality of focal elements must be either
1 or k. For the corresponding class of belief functions the
pignistic probability and the intersection probability are equal.
Finally, the dual case ofk-additive belief function is calledk-
intolerant belief functions [30]. In this case, there is no focal
element with a cardinality lower thank−1. All these families
have interesting supports, and in the sequel, we aim at defining
a generalization of the plausibility transform, which can be
parametrized to provide a proxy belonging to any of them.

C. The generalized relative plausibility

We do not consider each family (k-intolerant,k-additive,
etc.) of belief functions separately. We directly considerthe
case of a general Bayesian mass functionm

[M′]
Y , the core of

which reads any type of structure, and its mass not necessarily
being uniformly distributed among the focal elements.

So far,m[I]
X (the mass function to approximate) andY are

known. Moreover, the meaning of[M′] was preciously fully
detailed. Hence, the definition ofm[M′]

Y is rather simple. The
only point is to remind that inΩY , m

[M′]
Y is Bayesian. Then,

9Of course, this is not mandatory, but (1) it helps to understand the global
procedure, (2) it corresponds to a “fair” situation where noprior information
is available, nor prior weight[W] is used.

∀♦Ai
∈ ΩY , one has:

m
[M′]
Y (♦Ai

) = ai such that
∑

i ai = 1

m
[M′]
Y (.) = 0 otherwise

whereAi are subsets ofΩX and♦Ai
are elements ofΩY .

The extension ofm[M′]
Y to m

[M′]
(X,Y ) has not been discussed

yet. As previously explained,Y is a set of elements represent-
ing the sets ofP(ΩX). Then,ΩY is richer thanΩX , in the
meaning that, it is always possible to express a function on
P(ΩX) as a function onP(ΩY ), which is a kind of powerset
of the powerset ofΩX . Thus, working on the vector(X,Y )
may appear as a bit cumbersome, and working onY may
be sufficient. We adopt this latter strategy, as it simplifiesthe
notation.

Then, it is necessary to express[I] as a piece of information
on Y rather than onX(Later, this operation is noted↑↑). To
do so, we propose to using the following mass function:

m
[I]
Y (∇A) = m

[I]
X (A) ∀A ⊆ ΩX

where ∇A is the set of all theyk = ♦{k1,k2,...,kj} such
that

{

xk1
, xk2

, ...xkj

}

⊆ A. This cumbersome notation is
necessary to make sure that∀A ⊆ ΩX :

[

m
[I]
Y ⊕ m

[J ]
Y

]

(∇A) =
[

m
[I]
X ⊕ m

[J ]
X

]

(A)

Let us compute the Dempster’s combination

m
[GP l]
Y = m

[I]
Y ⊕ m

[M′]
Y

with the communalities:q[GP l]
Y = K′ · q

[I]
Y · q

[M′]
Y , with,

K′ =





∑

A 6=∅

(−1)|A|+1 · q
[M′]
Y (A) · q

[I]
Y (A)





−1

Moreover,m[M′]
Y is Bayesian. Thus,m[GP l]

Y is Bayesian, and
we havem[M′]

Y = q
[M′]
Y andm

[GP l]
Y = q

[GP l]
Y . Thus∀A ⊆ ΩX :

m
[GP l]
Y (♦A) = K′ · m

[M′]
Y (♦A) · q

[I]
Y (♦A)

and q
[GP l]
Y (.) = 0 otherwise

The last step is to “marginalize back” the result onX (noted
↓↓). As each focal element is of the form♦A, there is a one-
to-one correspondence between the focal elements ofm

[GP l]
Y

and the elements ofΩX . Thus, we define the following new
masses:

m
[GP l]
X (A) = m

[GP l]
Y (♦A)

m
[M′]
X (A) = m

[M′]
Y (♦A)

Moreover, we have, by construction,q
[I]
Y (♦A) = q

[I]
Y (∇A), as

the∇{.} are the only focal elements ofm[I]
Y , and as

∇A = ♦A ∪

[

⋃

B⊂A

∇B

]

Moreover, as by definition,q[I]
Y (∇A) = q

[I]
X (A), one has the

following result:



Theorem 1: Let m
[M′]
X and m

[I]
X be two mass functions.

m
[M′]
Y is derived fromm

[M′]
X according to the process de-

scribed above. We define the following mass function:

m
[GP l]
X = O[M′]

(

m
[I]
X

)

=

[

[

m
[M′]
Y

]

⊕
[

m
[I]
X

]↑↑Y
]↓↓X

1) ∀A ⊆ ΩX , we have:

m
[GP l]
X (A) = K′ · m

[M′]
X (A) · q

[I]
X (A)

whereK′ is a normalizing factor.
2) O[M′] is an approximating operator thant maps the set

of belief functions onto the set of belief functions the
support of which isF

(

m
[M′]
X

)

. In other words,m[GP l]
X

is a proxy form[I]
X .

3) If m
[M′]
X is Bayesian, thenO[M′] is a Bayesian approxi-

mating operator. Moreover, its resultm[GP l]
X corresponds

to m
[RP l]
X defined in Proposition 1.

4) If m
[M′]
X is Bayesian and uniform, thenO[M′] corre-

sponds to the plausibility transform, (or equivalently,
m

[GP l]
X = m

[RelP l]
X is the relative plausibility ofm[I]

X ).
5) O[M′] is a generalization of the plausibility transform,

parametred bym[M′]
X .

6) O[M′] commutes with Dempster’s combination.

proofs: 1) and 2) see above. 3) and 4) consequences of 2)
and see the explanations after Proposition 1. 5) Consequences
of 1)-4). 6) Obvious. �

IV. CONCLUSION & OUTLOOK

A parameterized family of proxies is defined, by the use
of Dempster’s combination and a meta-information encoding
a particular structure of support. This family of proxy gen-
eralizes the relative plausibility in many ways, such as, for
instance, thek-additive relative plausibility, or the weighted
relative plausibility. All these non-Bayesian proxies arebased
on the commonality function, such as initially defined by
Voorbraak [3].

In parallel to this work on relative plausibility, we have
seen that other well-known proxies can be defined in Haenni’s
framework, such as Denœux’ strong inner approximation, and
Denœux’ strong outer approximation. A similar work on the
relative belief woud be interesting, for two reasons: Firstly, it
is shown in [6], that the disjunctive combination is a hidden
Dempster’s combination (theorem 3.2). Then, the relative
belief can be expressed in Haenni’s framework, even if the
relative belief commutes with the disjunctive combinationand
does not commute with Dempster’s combination. Secondly, it
is shown in [17], [18], that the relative belief of a plausibility
function (then, the plausibility function is seen as a belief
function) commutes with Dempster’s combination.

In the future, a discussion on the distribution of the mass
function m

[M′]
Y which parameterizes the transform would be

interesting. It would also be interesting to look for measures to
quantify the distances between a mass function and its various
proxies, in order to choose the closest one, or to choose the one
which provides the best “distance/size of the support” ratio.

REFERENCES

[1] G. Shafer,A Mathematical Theory of Evidence, Princeton U. P., 1976.
[2] P. Smets and R. Kennes, “The transferable belief model”,Artificial

Intelligence, vol. 66 no.2, pp. 191–234, 1994.
[3] F. Voorbraak, “A computationally effcient approximationof Dempster-

Shafer theory,”Int. J. Man-Machine Studies, vol. 30, pp. 525–536, 1989.
[4] B. Tessem, “Approximations for Efficient Computation in theTheory of

Evidence,”Artif. Intell. Vol. 61, No. 2, pp. 315–329, 1993.
[5] M. Grabisch, “K-order additive discrete fuzzy measures and their repre-

sentation,”Fuzzy sets and systems, vol. 92, pp. 167–189, 1997.
[6] R. Haenni, “Uncover Dempster’s Rule Where It Is Hidden,”Proceedings

of the Inter. Conf. on Information Fusion, Florence, Italy, 2006.
[7] G. C. Rota, “On the foundations of combinatorial theory I.Theory of
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