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Abstract—The concept of base rates is a central in the theory of
probability. Base rates are for example useful for default and for
conditional reasoning. Traditional belief theory does not specify
base rates. The strength of belief theory is the principle of sub-
additivity, meaning that the sum of belief masses on disjoint
elements in a frame can be less than one. Without base rates
however, there are many situations where belief theory does not
provide an adequate model for expressing beliefs. This paper
specifies base rates for belief functions and shows how it can be
used for probability and Dirichlet projections.
Keywords: Base Rates, Probability, Dirichlet.

I. INTRODUCTION

Probability representations and belief representations both
apply to state spaces. The term used for a state space in belief
theory is normally frame of discernment which we will simply
call frame here. From this common basis it is interesting to
notice the main difference between the probability and belief
representations.

Belief theory abandons the additivity principle of classical
probability theory which requires that the sum of probability
values of mutually disjoint subsets in a frame always equals
1. This gives belief representations certain advantages over
traditional probability representations with regard to repre-
senting ignorance and uncertainty. For example, let “I don’t
know” be a subject’s answer to the question “Which of x, y
or z is true?”. The closest representation of that answer in
probabilistic terms would be p(x) = p(y) = p(z) = 1

3 which
could be interpreted as ”I believe that either x, y or z is true,
and that their likelihoods of being true are equal”. However,
the answer “I don’t know” can be much more elegantly and
concisely expressed with the belief function m(x∪y∪z) = 1,
meaning that the total belief mass is assigned to the union of
x, y and z, which could be interpreted as: ”I believe that either
x, y or z is true, but I don’t know which of them”. In general,
belief functions allow a rich set of belief structures to be
expressed, e.g. with belief mass assigned to partly overlapping
subsets, which has no equivalent in traditional probability
representation. This expressiveness is the main advantage of
belief theory.

However, base rates have traditionally not been defined
for belief functions whereas base rates are often defined
for probabilistic models. The concept of base rates, which
normally is interpreted as the relative frequency of occurrence
of a phenomenon in a population, is important in order to
model many practical situations. For example, the base rates of

various diseases are commonly known for specific populations,
which is an important when medical practitioners are making
diagnoses.

This paper defines base rates for belief functions and
describes how base rates can be used for for projecting general
belief functions onto probabilities and onto Dirichlet belief
distributions. This is useful when general beliefs are used
as input arguments in traditional statistical analysis or in
subjective logic.

II. BELIEF REPRESENTATIONS

Belief theory has its origin in a model for upper and
lower probabilities proposed by Dempster in 1960. Shafer later
proposed a model for expressing beliefs [1]. The main idea
behind belief theory is to abandon the additivity principle of
probability theory, i.e. the principle that the sum of probabil-
ities on all pairwise disjoint states must add up to one. The
main advantage of this approach is that ignorance, i.e. the lack
of information, can be explicitly expressed e.g. by assigning
belief mass to (partially) overlapping subsets or to the whole
frame.

Classical belief representation is very general, and allows
complex belief structures to be expressed on arbitrarily large
frames. Shafer’s book [1] describes many aspects of belief
theory, but the two main elements are: 1) a flexible way of
expressing beliefs, and 2) a method for conjunctive fusion of
beliefs, commonly known as Dempster’s Rule. We will not be
concerned with Dempster’s rule here.

A. Fundamental Belief Representation Concepts

In order to introduce the notation and to make this pre-
sentation self contained, central concepts from the Dempster-
Shafer theory of evidence [1] are recalled. Let X = {xi, i =
1, · · · , k} where k ≥ 2 denote a finite set of exhaustive and
disjoint possible values for a state variable of interest. This is
usually called a frame of discernment, and means the same as a
state space in traditional set theory terminology. The frame can
for example be the set of six possible outcomes of throwing a
dice, where the (unknown) outcome of a particular instance of
throwing the dice becomes the state variable. The powerset of
X is defined as 2X = {x′i ⊆ X|i = 1, . . . (2k − 1)}, meaning
that the elements of 2X are the subsets of X . We let the first
k elements of 2X be equal to the corresponding k singleton
subsets from X , expressed as x′i = {xi} for 1 ≤ i ≤ k, which
with a slight abuse of notation also can be written as x′i = xi.



A bba (basic belief assignment1) on X denoted by mX is
defined as a belief mass distribution function mX : 2X →
[0, 1] satisfying:

mX(∅) = 0 and
∑
x′
i⊆X

mX(x′i) = 1 . (1)

Values of a bba are called belief masses. Each subset x′i ⊆
X such that mX(x′i) > 0 is called a focal element of mX .

From a bba mX can be derived a set of non-additive belief
functions Bel: 2X → [0, 1], defined as

Bel(x′i) ,
∑

∅6=x′
j⊆x′

i

mX(x′j) ∀ x′i ⊆ X . (2)

The quantity Bel(x′i) can be interpreted as a measure of
the total of one’s belief committed to the hypothesis that x′i
is true. Note that the functions mX and Bel are in one-to-one
correspondence [1] and can be seen as two facets of the same
piece of information.

A general bba mX can be projected to a scalar probability
value through the probability projection [3], also known as the
pignistic transformation [4], [5], denoted by ℘(x′i), defined as:

℘(x′i) =
∑

x′
j⊆X

mX(x′j)
|x′i ∩ x′j |
|x′j |

, ∀ x′i ∈ 2X . (3)

By using Eq.(3), it is possible to derive a probability
expectation value for every subset of the frame as a function of
the bba. Of course, this process is affected by information loss,
so it would not be possible to recover the original bba from
the set of probability expectation values produced through the
projection.

A few special classes of bba can be mentioned. A vacuous
bba has mX(X) = 1, i.e. no belief mass committed to any
proper subset of X . A Bayesian bba is when all the focal
elements are singletons, i.e. one-element subsets of X . If
all the focal elements are nestable (i.e. linearly ordered by
inclusion) then we speak about consonant bba. A dogmatic
bba is defined as a bba for which mX(X) = 0 [6]. Let us
note, that trivially, every Bayesian bba is dogmatic.

B. Base Rate Augmented Belief Functions

The traditional probability projection of belief functions
defined by Eq.(3) assumes a default subset base rate that is
equal to the subset’s relative atomicity. In other words, the
default base rate of a subset is equal to the relative number
of singletons in the subset with respect to the total number
of singletons in the whole frame. Subsets also have default
relative base rates with respect to every other fully or partly
overlapping subset of the frame. Thus, when projecting a
bba to scalar probability values, Eq.(3) dictates that belief
masses on subsets contribute to the projected probabilities as
a function of the default base rates on those subsets.

1Called basic probability assignment in [1], and Belief Mass Assignment
(BMA) in [2].

However, in practical situations it would be possible and
useful to apply base rates that are different from the default
base rates. For example, when considering the base rate
of a particular infectious disease in a specific population,
the frame can be defined as {“infected”,“not infected”}.
Assuming that an unknown person enters a medical clinic,
the physician would a priori be ignorant about whether that
person is infected or not before having assessed any evidence.
This ignorance should intuitively be expressed as a vacuous
belief function, i.e. with the total belief mass assigned to
(“infected” ∪ “not infected”). The probability projection of
a vacuous belief function using Eq.(3) would dictate that the
a priori probability of having the disease is 0.5. Of course,
the base rate of diseases is normally much lower, and can
be determined by relevant statistics from a given population.
Traditional belief functions are not well suited for representing
this situation. Using only traditional belief functions, the base
rate of a disease would have to be expressed through a
bba that assigns some belief mass to either “infected” or
“not infected” or both. Then after assessing the results of e.g.
a medical test, the bba would have to be conditionally updated
to reflect the test evidence in order to derive the a posteriori
bba. Unfortunately, no computational method for conditional
updating of traditional bbas according to this principle exists.
The methods that have been proposed, e.g. [7], have been
shown to be flawed [8] because they are subject to the base
rate fallacy [9]. Base rates for belief functions represents
a necessary prerequisite for conditional belief reasoning, in
particular for abductive belief reasoning. This paper only
focuses on describing base rates, and leaves the investigation
of conditional belief reasoning for future research.

In order to have a better and more intuitive probability
projection from belief functions in general and from vacuous
belief functions in particular we propose to augment traditional
bbas with a base rate function. When taking a bba combined
with a base rate function and then projecting it to probabilities,
the share of contributing belief mass from subsets of the frame
will be a function of this base rate function. Let a denote the
base rate function so that a(xi) represents the base rate of the
elements xi ∈ X . The base rate function is formally defined
below.

Definition 1 (Base Rate Function): Let X = {xi|i =
1, . . . k} be a frame, and let aX be the function from X to
[0, 1]k satisfying:

aX(∅) = 0, aX(xi) ∈ [0, 1] and
k∑

i=1

aX(xi) = 1 . (4)

Then aX is called a base rate function.
Events that can be repeated many times are typically

frequentist in nature, meaning that the base rates for these
often can be derived from statistical observations. For events
that can only happen once, the analyst must often extract
base rates from subjective intuition or from analyzing the
nature of the phenomenon at hand and any other relevant
evidence. However, in many cases this can lead to considerable



uncertainty about the base rate, and when nothing else is
known, the default base rate of the singletons in a frame
must be defined to be equally partitioned between them. More
specifically, when there are k singletons in the frame, the
default base rate of each element is 1/k.

The difference between the concepts of subjective and
frequentist probabilities is that the former can be defined as
subjective betting odds – and the latter as the relative frequency
of empirically observed data, where the subjective probability
normally converges toward the frequentist probability in the
case where empirical data is available [10]. The concepts of
subjective and empirical base rates can be interpreted in a
similar manner where they also converge and merge into a
single base rate when empirical data about the population in
question is available.

It is possible to define base rate functions that assign specific
base rates to the elements of the frame, and that in general
are different from the default base rate of 1/k for for each
singleton.

The intended meaningful interpretation of the base rate
function emerges from its application as the basis for prob-
ability projection of bbas. Because a bba can be specified to
assign belief mass to any subset of the frame, i.e. also to
subsets larger than singletons, it is necessary to also represent
the base rates of such subsets. This is defined below.

Definition 2 (Subset Base Rates): Let X = {xi|i =
1, . . . k} be a frame, and let 2X = {x′i ⊆ X|i = 1, . . . (2k −
1)} be the powerset of X , with x′i = xi for 1 ≤ i ≤ k. Assume
that a base rate function aX is defined over X according to
Def.1. Then the base rates of the elements of the powerset 2X

are expressed according to the base rate function a′ defined
below.

a(2X)(∅) = 0 and a(2X)(x
′
i) =

∑
xj⊆x′

i

aX(xj). (5)

Trivially, it can be seen that a(2X)(x
′
i) = aX(xi) for

1 ≤ i ≤ k, i.e. that elements in 2X that correspond to
singletons in X have a base rate equal to that of their
corresponding singleton subsets. Because of this strong corre-
spondence between aX and a(2X) we will simply denote both
base rate functions as aX .

Equipped with the subset base rate function of Def.2 the
expression for probability projection of bbas as a function of
base rates can be defined.

Definition 3 (Probability Projection with Base Rates): Let
X = {xi|i = 1, . . . k} be a frame. Assume that mX is a bba
on X and that aX is a base rate function on X , then the
probability projection of mX as a function of aX is expressed
according to Eq.(6) below.

℘′(x′i) =
∑

x′
j⊆X

mX(x′j)
aX(x′i ∩ x′j)

aX(x′j)
, ∀ x′i ∈ 2X . (6)

Trivially, when aX(xi) = 1
k ,∀xi ∈ X , i.e. when the base

rate function aX simply expresses the default base rates, it can
be seen that ℘′(x′i) = ℘(x′i) from Eq.(3).

The base rate function has the same syntactic constraints
as a traditional probability function, such as additivity, i.e. the
sum of base rates over all mutually exclusive subsets equals
one.

C. Example: Base Rates of Diseases

The base rate of diseases within a community can be
estimated. Typically, data is collected from hospitals, clinics
and other sources where people diagnosed with the disease
are treated. The amount of data that is required to calculate
the base rate of the disease will be determined by some
departmental guidelines, statistical analysis, and expert opinion
about the data that it is truly reflective of the actual number of
infections – which is itself a subjective assessment. After the
guidelines, analysis and opinion are all satisfied, the base rate
will be determined from the data, and can then be used with
medical tests to provide a better indication of the likelihood
of specific patients having contracted the disease [11].

D. The Dirichlet bba

We define a special type of bbas called Dirichlet bba which
are equivalent to opinions used in subjective logic. Dirichlet
bbas are characterized by having only mutually disjoint focal
elements, except the whole frame X itself. This is defined as
follows.

Definition 4 (Dirichlet bba): Let X be a frame. A bba
mD

Xwhere the only focal elements are X and/or mutually
exclusive subsets of X (singletons or sets of singletons),
is called a Dirichlet belief mass distribution function, or
Dirichlet bba for short.

The probability projection of Dirichlet bbas is particularly
simple and can be expressed as a function of the bba and the
base rate function.

℘(xi) = mD
X(xi) + aX(xi)m

D
X(X) (7)

where mD
X denotes a Dirichlet bba on X .

The number of singletons in a frame X is the same as its
cardinality |X|. The number of focal elements of a Dirichlet
bba can be at most |X| + 1, which happens when every
singleton as well as well as the whole frame is a focal element.

The name ”Dirichlet” bba is used because bbas of this
type can be interpreted as equivalent to Dirichlet probability
density functions under a specific mapping. A bijective map-
ping between Dirichlet bbas and Dirichlet probability density
functions is defined in [12].

E. Comparison to the Imprecise Dirichlet Model

The Imprecise Dirichlet Model (IDM) for multinomial data
is described by Walley [13] as a method for determining
upper and lower probabilities. The model is based on varying
the base rate over all possible outcomes. The probability
expectation value of an outcome resulting from assigning the
total base rate (i.e. equal to one) to that outcome produces



the upper probability, and the probability expectation value of
an outcome resulting from assigning a zero base rate to that
outcome produces the lower probability. The upper and lower
probabilities are interpreted as the upper and lower bounds
for the relative frequency of the outcome. While this is an
interesting interpretation of the Dirichlet distribution, it can
not be taken literally, as shown below.

According to the Imprecise Dirichlet Model (IDM) [13]
the upper and lower probability values for an outcome xi are
defined as:

IDM Upper probability: P (xi) =
r(xi) +W

W +
∑k

i=1 r(xi)
(8)

IDM Lower probability: P (xi) =
r(xi)

W +
∑k

i=1 r(xi)
(9)

where r(xi) denotes the amount of evidence for outcome
xi and W denotes the prior non-informative weight of the
Dirichlet distribution. It is normal to set W = 2 although
other values for the non-informative prior weight are possible.

It can easily be shown that the IDM Upper and IDM Lower
values can not be literally interpreted as upper and lower
bounds for for the probability. For example, assume a bag
contains 9 red marbles and 1 black marble, meaning that the
relative frequencies of red and black marbles are p(red) = 0.9
and p(black) = 0.1. The a priori weight is set to W = 2.
Assume further that an observer picks one marble which turns
out to be black. According to Eq.(9) the lower probability is
then P (black) = 1

3 . It would be incorrect to literally interpret
this value as the lower bound for the probability because it
obviously is greater than the actual relative frequency of black
balls. In other words, if P (black) > p(black) then P (black)
can impossibly be the lower bound. This case shows that the
upper and lower probabilities defined by the IDM should be
interpreted as a rough probability interval, because that would
allow actual relative frequencies can be outside the range.

Utkin (2005) [14] defines a method for deriving beliefs and
plausibilities based on the IDM, where the lower probability is
interpreted as the belief and the upper probability is interpreted
as the plausibility. This method can produce unreasonable
results in practical applications, and Utkin provides extensions
to the Imprecise Dirichlet Model to overcome some of these
problems. In our view the belief and plausibility functions
can not be based on the base rate uncertainty of the Dirichlet
distributions. The base rates are determined by the structure of
the state space when it is known, and must be estimated on a
subjective basis when not known [6]. In belief theory, the state
space structure is used when e.g. computing the probability
projection, but it is independent of the bba.

III. PROJECTING GENERAL BBAS TO DIRICHLET BBAS

Let X be a frame over which a general bba mX and a base
rate function aX are specified. We will define a projection from
mX to a Dirichlet bba mD

X which preserves the probability
expectation value of every subset of X

In case the original bba mX already is a Dirichlet bba, no
projection is needed. Def.(5) provides a test for determining
whether the original bba is a Dirichlet bba or not.

Definition 5 (Dirichlet bba Test): Let mX be a bba defined
over the frame X , and let X̂ ⊂ 2X denote the set of focal
elements of mX , not including the frame X itself. Then mX

is a Dirichlet bba if the following is true.

x′i 6= x′j → x′i ∩ x′j = ∅, ∀ x′i, x′j ∈ X̂

where → denotes material implication.
Note that the case (x′i = x′j) ∧ (x′i ∩ x′j = ∅) does not apply.

Assuming that a bba is not a Dirichlet bba, then it can be
projected onto a Dirichlet bba. We require that the projection
preserve the probability expectation values of each subset in
the frame, and also that it preserve the bba’s degree of uncer-
tainty as will be explained below. The degree of uncertainty
is here interpreted as inversely proportional to dogmatism, i.e.
the larger the focal elements and the more belief mass assigned
to them, the greater the degree of uncertainty.

The powerset 2X of a frame X of n singletons has 2n − 1
elements, i.e. each subset in X is an element in 2X . Subsets
of X contains an integer number of singletons in the range
[1, n]. Trivially there are exactly n subsets that are themselves
singletons, and exactly 1 element which contains n singletons
and which therefore is the whole frame itself.

We are interested in the total belief mass assigned to subsets
of specific sizes. A bba with belief mass assigned mainly
to large subsets contains more uncertainty than a bba with
belief mass assigned mainly to small subsets. This observation
forms the basis for defining relative uncertainty weights to
specific subset sizes, where the weight 1 is assigned to the
whole frame and the weight 0 is assigned to singletons. The
relative uncertainty weight of intermediate subset sizes is
evenly distributed according to the definition below.

Definition 6 (Relative Uncertainty Weights): Let X be a
frame of size k. The relative uncertainty weights U(x′i) of
subsets x′i ⊆ X are defined according to: U(x′i) = 0 for 1 ≤ i ≤ k

U(x′i) = aX(x′i) for k < i ≤ (2k − 1)
U(X) = 1

(10)

Def.6 is ad hoc and is based on the following rationale. The
uncertainty weight is a function of the prior base rate. More
precisely, belief mass assigned to subsets with relatively high
base rate signifies relatively high uncertainty, whereas belief
mass assigned to subsets with relatively low base rate signifies
relatively low uncertainty. The actual number of states in a
frame is irrelevant.

The relative uncertainty of a bba can be defined as a function
of the bba and the distribution of uncertainty weights over the
elements of the powerset.

Definition 7 (Degree of Uncertainty): Let X be a frame of
size k, and let mX be a bba on X . The degree of uncertainty
u(mX) of mX is defined according to:

u(mX) =
∑
x′
i⊆X

mX(x′i)U(x′i) (11)



Equipped with the above definitions it is possible to define
a projection from general bbas to Dirichlet bbas. The Dirichlet
projection is done in three steps. First produce a trivial
Bayesian bba mP

X . Secondly, the Bayesian bba is uncertainty-
maximized as m̂X to identify the maximum uncertainty that
the projected bba can contain. Finally, the uncertainty mD

X(X)
is set to best match the degree uncertainty of Eq.(11).

1) The probability projection according to Eq.(6) can be
used as a basis for a trivial dogmatic Dirichlet bba, i.e.
with zero belief mass assigned to the frame itself. This
is done by assigning the projected probability of each
singleton as belief mass to that singleton. The resulting
bba, denoted by mP

X is a dogmatic Dirichlet bba, which
is also a Bayesian bba.

2) Uncertainty maximization of mP
X consists of converting

as much belief mass as possible into uncertainty mass,
i.e. belief mass on X , while preserving consistent prob-
ability expectation values according to Eq.(6). The result
is the uncertainty maximized bba denoted as m̂X . The
equation

℘(xi) = mX(xi) + aX(xi)mX(X) , ∀xi ∈ X (12)

is by definition satisfied for mP
X(xi) where mP

X(X) = 0,
and we require that m̂X(xi) also satisfies Eq.(12). In
general Eq.(12) defines the bbas mX that project to the
same Bayesian bba as that of Eq.(6). The particular
bba m̂X(xi) is uncertainty-maximized when Eq.(12)
is satisfied and at least one belief mass of m̂X is
zero. In general, not all belief masses can be zero
simultaneously; that is only possible for vacuous bbas.
In order to find the state(s) that can have zero belief
mass, the belief mass will be set to zero in Eq.(12)
successively for each dimension xi ∈ X , resulting in
k different uncertainty values defined as:

mi
X(X) =

℘(xi)

aX(xi)
, where i = 1 . . . k . (13)

The smallest uncertainty for which one of the belief
masses is zero, expressed as

mt
X(X) = min{mi

X(X), for i = 1 . . . k} (14)

determines the state for which the belief mass is zero,
and all other belief masses are are either zero or positive.
The reason why the state that results in the smallest
uncertainty must be chosen is that setting the belief
mass to zero for any other state could result in negative
belief mass for other states. Assume that xt is the
state for which the resulting uncertainty is smallest. The
uncertainty maximized bba can then be determined as:

m̂X :

{
m̂X(xi) = ℘(xi)− aX(xi)m

t
X(X),

m̂X(X) = mt
X(X)

(15)

3) If the degree of uncertainty from Def.7 is less or equal to
that of the uncertainty-maximized bba, then it is possible
to adjust the projected bba to exactly match the degree

of uncertainty. If that is not the case, the uncertainty-
maximized bba from Eq.(15) is the best match. The
Dirichlet projected bba is then computed as:

IF m̂X(X) ≥ u(mX)
THEN

mD
X :

{
mD

X(xi) = ℘(xi)− aX(xi)u(mX),
mD

X(X) = u(mX)
ELSE
mD

X = m̂X

ENDIF
(16)

This projection of general bbas into Dirichlet bbas is a
useful tool for subjective logic practitioners. When a bba has
been converted into a Dirichlet bba, then it is equivalent to
a multinomial subjective opinion [12]. One can thus use this
method to convert any Dempster-Shafer basic belief assign-
ments into subjective opinions.

IV. EXAMPLE

Below is a simple example to illustrate how base rates can
be used for probabilistic and Dirichlet projection.

A submarine has been detected entering a strait, and a naval
analyst wants to express belief in what type submarine might
be. Assuming that there are mainly 4 possible types, and many
other relatively unlikely types, the frame can be defined as
X = {x1, x2, x3, x4, x5}, where x5 denotes other “types”. The
base rate aX specified below defines the average occurrence
rates of each submarine type passing through that strait.

aX :


aX(x1) = 0.25
aX(x2) = 0.20
aX(x3) = 0.15
aX(x4) = 0.35
aX(x5) = 0.05

(17)

Based on intelligence reports the analyst defines the bba
as expressed in Eq.(18) below. The belief assignment is also
depicted in Figure 1, where the mass has been assigned to
subsets x′1 = {x1}, x′6 = {x2 ∪ x4}, x′7 = {x3 ∪ x4}, and X .

x1 x3 x5

X

x2 x4 6x6

7x71x1

Figure 1. Example Belief Frame X.

mX :


mX(x′1) = 0.15
mX(x′6) = 0.50
mX(x′7) = 0.20
mX(X) = 0.15

(18)



Note that mX is not a Dirichlet bba because x′6 ∩ x′7 6= ∅.
The probability projection of the bba as a function of the base
rates according to Eq.(6) is then expressed as the Bayesian
bba below (rounded to 3 significant digits):

mP
X :


mP

X(x1) = 0.188
mP

X(x2) = 0.212
mP

X(x3) = 0.083
mP

X(x4) = 0.511
mP

X(x5) = 0.008

(19)

The degree of uncertainty according to Eq.(11) can be
computed as u(mX) = 0.525.

The smallest uncertainty according to Eq.(14) is mt
X(X) =

m5
X(X) = 0.16. The Dirichlet projection of the original bba

can then be computed to be as follows.

mD
X :



mD
X(x1) = 0.148

mD
X(x2) = 0.180

mD
X(x3) = 0.059

mD
X(x4) = 0.455

mD
X(x5) = 0.000

mD
X(X) = 0.16

(20)

The Dirichlet projection thus has a smaller degree of uncer-
tainty than the original bba. This reduction in uncertainty is
caused by the projection. Unlike the Bayesian bba projection
mP

X , the Dirichlet projection assigns no belief mass to x5,
which is in better agreement with the original bba. Dirichlet
bbas like mD

X can easily be converted to subjective logic
opinions (see [12]), which in turn provides a rich set of
operators for belief reasoning.

V. DISCUSSION AND CONCLUSION

Base rates are fundamental to probabilistic analysis, and
there is no reason why they should be less important in belief
theory. For example, in the case of determining the likelihood
of hypothesis based on observations through sensors or tests,
base rates are necessary. This is because the test results’
influence on the conclusion is determined by conditionals.
Unless base rates are taken into account the analyst runs the
danger of falling victim to a particular reasoning error which
commonly is known as the base rate fallacy [9] in medicine
or the prosecutor’s fallacy [15] in legal reasoning. An extreme
example of the base rate fallacy is to conclude that a male
person is pregnant just because he tests positive in a pregnancy
test. Obviously, the base rate of male pregnancy is zero, and
assuming that the test is not perfect, it would be correct to
conclude that the male person is not pregnant. The correct
reasoning that takes base rates into account can be formalized
mathematically in probability calculus.

Proposals for defining conditional reasoning in belief theory
have mainly been put forward by Smets 1993 [16] but it has
been shown that Smets’ method is flawed [8]. Subjective logic
which is related to belief theory uses opinions where base rates
are explicitly defined. This allows conditional reasoning with
subjective logic without the risk of falling victim to the base
rate fallacy [8].

In order to advance belief theory to include conditional
reasoning it is necessary to include base rates. This paper
has demonstrated that belief functions can easily be combined
with base rates. An interesting area of future research is to see
whether the expression of base rates can contribute to a sound
definition of belief-based conditional reasoning.
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