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Abstract—A new method for inferring the number of signal
pixels in an image is presented. The background pixels are
assumed to be independent and identically distributed Gaussian
random variables quantized to an integer value. Uncertainty
about the distribution of pixels in an image is represented
in a Dempster-Shafer Model. In this setting, a model for the
distribution of signal pixels is not necessary. The method of
Maximal Belief is used to ensure that inferences behave according
to a frequency interpretation. The new method is demonstrated
on simulated data and compared to a Bayesian multiscale
segmentation method using cryo-electron microscopic images.
Application of this method to other coarse data problems is
discussed in the conclusion.
Keywords: Coarse data, cryo-electron microscopy, image
processing, maximal belief, multiple testing.

I. I NTRODUCTION

In this paper we present a method for inferring the number
of signal pixels in an image. This is an important task in
situations where a large number of images are available, but
many contain only background noise. For example, a telescope
may produce thousands of images while scanning the sky, but
only a few contain images of stars or other interesting emission
sources. By first filtering out the images with low signal pixel
counts, subsequent analyses can be focused on images that are
likely to contain something interesting.

To accomplish this goal, we assumed that background
pixel values can be modeled as quantized Gaussian random
variables. Uncertainty about the distribution of each pixel was
represented as a Dempster-Shafer Model (DSM; [3], [6]) and
the method of Maximal Belief (MB; [7], [5]) was applied
to ensure that the resulting(p, q, r) behaved according to
a credible frequency interpretation. Section II describes the
credibility criteria and the application of MB to create credible
DSM’s. The specific DSM and inference procedure used in the
present problem are discussed in section III .

Finally, the new method was tested on simulated data
and several cryo-electron microscopic (cryo-EM; [4]) images.
Cryo-EM methods are capable of displaying biological struc-
tures at a level of detail close to the atomic scale. However,
the process is known to be very noisy and therefore serves as
an interesting test case for the method presented here. For a
comparison, the cryo-EM images were also segmented using
a Bayesian multiscale random field method [1]. The results of
these studies are discussed in section IV . Section V concludes

with consideration of future applications and directions for this
method.

II. CREDIBLE AND MAXIMAL BELIEFS

Consider a DSM for making inferences about the mean of a
Gaussian distribution from a single observation,X ∼ N(θ, 1).
We use the auxiliary equation,X = θ + Φ−1(U), to define
a posterior DSM with focal elements indexed by an auxiliary
random variableU :

MX(U) = {θ : θ = X − Φ−1(U)}, U ∈ [0, 1], (1)

where Φ−1 is the inverse function of the standard Gaus-
sian cdf. The mass for each focal element is defined by a
Unif(0, 1) distribution for U . For any assertion of interest,
such asA = {θ ≤ θ0}, we have

pX(A) = Pr{MX(U) ⊆ A},

qX(A) = Pr{MX(U) ⊆ AC}, and

rX(A) = 1− pX(A)− qX(A) = 0.

As discussed in [5], [7], some assertions lead to(p, q, r)
that would not have a sensible frequency interpretation over
repetitions of the same experiment. The following credibility
criteria were proposed in [7] to give(p, q, r) a frequency
interpretation:

Definition 2.1 (Credibility): Given an assertion,A, a DSM
is credible at levelα for inference aboutA if

∀θ ∈ AC , Pr{pX(A) ≥ 1− α} ≤ α, and (2)

∀θ ∈ A, Pr{qX(A) ≥ 1− α} ≤ α. (3)

Essentially, (2) says that if we decideA is true whenpX(A) ≥
1−α, then the probability of making the wrong decision is at
mostα. WhenA is actually true, (3) says that there is at most
α probability of being wrong if we decideA is false because
qX(A) ≥ 1− α.

For some assertions, such as the point assertionA = {θ =
θ0}, definition 2.1 is not satisfied using DSM (1). The MB
method introduced by [7] expands each focal elements in the
DSM to be just large enough so that the resulting(p, q, r)
will be credible for any assertion of interest. To expand focal



elements, we use a random set, such asS(U) = {U? : |U? −
0.5| ≤ |U − 0.5|}. See [7] and [5] for discussion of how to
chooseS(U). Applying S(U) to DSM (1) yields expanded
focal elements:

M ′X(U) = {θ : θ = X − Φ−1(u), u ∈ S(U)}
= [X − Φ−1(0.5− |U − 0.5|),

X − Φ−1(0.5 + |U − 0.5|)] (4)

These expanded focal elements are still indexed byU ∈
[0, 1] and the mass for each element is still defined by the
Unif(0, 1) distribution. Under the conditions discussed in [7],
DSM (4) satisfies definition 2.1 for every assertion.

III. A C REDIBLE DSM FOR DETECTING OUTLIERS

In the present study we assumed that each pixel was quan-
tized by rounding to the nearest integer valueX̃ ∈ [0, ..., 255]
(rounding up in the case of exactly 0.5 fractional part). We
wished to make inference about the distribution of the under-
lying random variable,X, for which the quantizing process
gives the interval,

X ∈
[
X̃ − 0.5, X̃ + 0.5

)
. (5)

We assumed that background pixels were independent and
identically distributed (i.i.d.) fromN(µ, σ2). The inference
procedure presented here does not require any assumption
about the distribution of signal pixel values. Before extending
this method to interval observations, we first discuss the
method developed in [8] for point observations.

A. Inference with Point Observations

Suppose that the values of the underlying Gaussian variates
were exactly known instead of being in an interval. For a
sample ofN observations, let(X(i))Ni=1 be the order statistics
and apply the transformation,

U(i) = Φ
(
X(i)−µ

σ

)
. (6)

If {Xi}Ni=1 are i.i.d. samples from theN(µ, σ2) distribution,
then (U(i))Ni=1 is a sequence of orderedUnif(0, 1) random
variables. AnyXi not from N(µ, σ2) can be considered an
outlier.

A credible DSM for the cdf of a sequence of independent
samples,{Xi}ni=1, is given in [8]. Let

S
+
n = {(u1, ..., un) : 0 < u1 < ... < un < 1}

be the space of all orderedUnif(0, 1) samples of size
n. To represent uncertainty about the cdf of{Xi}ni=1 i.i.d.
observations, one could useU ∈ S+

n as an auxiliary random
variable to create a DSM with focal elements,

M{Xi}(U) = {F ∈ C : (F (X(i)))ni=1 = U}, (7)

whereC is the set of all continuous cdf’s. However, this DSM
does not produce credible(p, q, r) for an assertion such as
A = {F : F = F0}. According to the MB method a random

set can be used to expand the focal elements and make (7)
credible. ForU ∈ S+

n , the random set in [8] is defined as

Sn(U) = {U? ∈ S+
n : g(U?) ≥ g(U)},

where

g(u) =
n∑
i=1

[ai ln(ui) + bi ln(1− ui)] , (8)

with ai = (n− i+ 0.7)−1 andbi = (i− 0.3)−1. This random
set always contains the point,

arg max g(U) =
(

a1

a1 + b1
, ...,

an
an + bn

)
,

which is close to the point of marginal medians for ordered
Unif(0, 1) random variables,(U(1), ..., U(n)). Smaller values
of g(U) imply a larger marginal interval for eachU(i). Finally,
as g(U) approaches−∞ there must be at least oneU(i)

approaching{0, 1}, and thus,S(U) expands to cover the
whole of S+

n . Applying the random setSn(U) to (7) results
in the credible posterior DSM introduced in [8] with focal
elements,

M ′{Xi}(U) =
{
F ∈ C : g

(
(F (X(i)))ni=1

)
≥ g(U)

}
.

The mass for each unique focal element corresponds to the
distribution ofg(U). Intuitively, the highest probability region
of g(U) corresponds to the most likely orderedUnif(0, 1)
samples.

To infer the number of outliers of the cdfF0 in a sample of
sizeN , [7] and [8] compute(p, q, r) for the sequence of asser-
tions,Ak = “at leastk Xi’s are outliers ofF0” (k = 1, ..., N ).
For pixels distributed asN(µ, σ2), F0(x) = Φ(x−µσ ). In this
case,ACk = “there are at leastN−k+1 Xi’s fromN(µ, σ2).”
Equivalently, if we transform the orderedX(i)’s according
to (6), thenACk = “at leastN − k + 1 U(i)’s are ordered
Unif(0, 1) random variates.” Formally, forj < N , let

U
j
N = {(U(i1), ..., U(iN−j)) : 1 ≤ i1 < ... < iN−j ≤ N}

be the set of all length-(N − j) subsequences of(U(i))Ni=1.
The negated assertion can be represented inS

+
N−k+1 as

ACk = U
k−1
N . For ACk to be false (andAk true), it would

be sufficient to show that no elements inUk−1
N are ordered

Unif(0, 1) variates. Of course we do not know with certainty
which elements ofUk−1

N come fromUnif(0, 1) and which do
not. Therefore, computingpX(Ak) amounts to computing the
belief that none of the sequences inUk−1

N are ordered samples
from Unif(0, 1).

pX(Ak) = Pr{SN−k+1(U) ⊆ Ak}
= Pr

{
ACk ⊆ [SN−k+1(U)]C

}
= Pr

{
U
k−1
N ⊆ [SN−k+1(U)]C

}
= Pr

{
∀u ∈ Uk−1

N , g(u) ≤ g(U)
}

= Pr

{
max
u∈Uk−1

N

g(u) ≤ g(U)

}
. (9)



Since|UjN | =
(
N
j

)
andSN−k+1(U) is almost surely uncount-

able,

qX(Ak) = Pr{SN−k+1(U) ⊆ ACk } = 0.

Thus, rX(Ak) = 1 − pX(Ak). An algorithm for finding the
maximum of g(u) in (9) is given in [8] and the probability
can be estimated using Monte Carlo simulation.

B. Inference with Coarse Observations

In the present problem, where only the quantized pixel
values,{X̃i}Ni=1, are observed, applying the transformation
(6) gives the following interval for eachU(i):

wi =

[
Φ

(
X̃(i) − 0.5− µ

σ

)
,Φ

(
X̃(i) + 0.5− µ

σ

))
.

The method of [8] can be applied here as well, even though
theU(i) values are not precisely known. Let

W
j
N = {(wi1 , ..., wiN−j ) : 1 ≤ i1 < ... < iN−j ≤ N}.

Then,

ACk = {U? ∈ S+
N−k+1 : ∃W ∈Wk−1

N , U? ∈W}

and

pX(Ak) = Pr
{
ACk ⊆ [SN−k+1(U)]C

}
= Pr

{
max

W∈Wk−1
N

sup
u∈W

g(u) ≤ g(U)

}
, (10)

whereg is defined as in (8). Note that

ai ln(v) + bi ln(1− v)

is concave inv and for eachwj ∈W ,

sup
v∈wj

ai ln(v) + bi ln(1− v)

can be found analytically. Therefore,

sup
u∈W

g(u) =
N−k+1∑
j=1

sup
v∈wj

[aj ln(v) + bj ln(1− v)] (11)

can be computed analytically. The supremum ofg(u) over
W ∈ Wk−1

N in (10), can be found by using the algorithm of
[8] with (11) as the objective function.

In practice, to estimate the number of signal pixels in an
image of sizeN one could use a binary search overk =
1, ..., N to find k̂α = max{k : pX(Ak) ≥ 1− α}. The choice
of α depends on the acceptable level of risk in overestimating
the number of signal pixels.

IV. RESULTS

A. Simulation Study

First, the method of section III was used to replicate the
simulation study of [7], but using coarse data. The variates,
Xi ∼ N(µi, 1) (i = 1, ..., 100), were generated according to
one of the following regimes:

(a) µ1, ..., µ100 = 0
(b) µ1, ..., µ90 = 0 and fori = 91, ..., 100, µi ∼ 2 +Exp(1)
(c) µ1, ..., µ90 = 0 and fori = 91, ..., 100, µi ∼ 4 +Exp(1)
(d) µ1, ..., µ90 = 0 and fori = 91, ..., 100, µi ∼ 6 +Exp(1)
Each observation was rounded to the nearest integer, giving the
interval in (5). Ten simulations were performed for each of the
four regimes. For each simulation the sequence{pX(Ak)}21

k=1

was computed. These sequences are plotted in Fig. 1. This
study was implemented in R and it took approximately 57
minutes to complete all forty simulations on a desktop PC
with 3.25 GB of RAM and a 3.0 GHz processor.

Figure 1. Replication of the study in [7], but using the method of section
III and quantized data.

B. Cryo-EM Image Study

Next, the method was applied to cryo-EM images. Three
images were chosen to represent high, medium, and low
quantities of signal pixels. Each image was221 × 216
pixels. The quantizing model in (5) was assumed. Esti-
mates of the noise parameters,µ and σ2, were obtained
from a sample of each background region. For each im-
age, the sequence{pX(AbqNc)} was computed withq =
0.05, 0.10, 0.15, ..., 0.80. These sequences (up toq = 0.5) and
the images are shown in Fig. 2. Implemented as C functions
called from R, each image took approximately 3.8 hours to
process on a server with 12 GB of RAM and a 2.83 GHz
processor.

Additionally, for each image a binary search was performed
to find k̂0.05, the estimated number of signal pixels. Because



Figure 2. Results for cryo-EM images with low (top row), medium (middle
row), and high (bottom row), amounts of signal pixels. The left column shows
the original image with the background sample region for estimatingµ andσ2

outlined by a rectangle. The right column plots the{pX(AbqNc)} sequence
for q = 0.05, 0.10, 0.15, ..., 0.50.

a background pixel is independent of all other pixels, it is
uncorrelated with its neighbors. For a given pixel,i, we defined
a neighborhood,∂i, as the15 × 15 square around, but not
including pixel i. We then calculated the following measure
of correlation between the pixel and its neighbors:

si =
∑
j∈∂i

(xi − µ)(xj − µ)
m

,

wherem is the number of pixels in∂i. TheN − k̂0.05 pixels
with the lowest values of|si| were considered background.
For a comparison, we also performed two-class segmentation
using the Bayesian multiscale method [1] implemented in
the SMAP software package [2]. For each image, the SMAP
package estimated the distribution for the background class
using the previously obtained background samples while the
signal class distribution was esitmated using several samples

taken manually from each signal region. Fig. 3 shows each
image with the estimated background pixels’ values set near
µ for both the present and SMAP methods.

V. CONCLUDING REMARKS

As a tool for segmentating the signal and background in
cryo-EM images, the present method performed comparably
to the multiscale Bayesian method [1] implemented in SMAP
[2]. However, one advantage of using the present method
is that it requires no information about the distribution of
the signal pixels. The SMAP package, on the other hand,
estimated the signal distribution using a Gaussian mixture
model and training samples from the signal region. In the cryo-
EM images, it was relatively easy to find a large, representative
background sample. This is often more difficult for signal
regions. Ultimately, any manual sampling defeats the purpose
of using this method for automatically filtering out images
with a low number of signal pixels. Therefore, future work
should consider simultaneous estimation of the background
distribution and detection of outliers from that distribution.

The method presented in this paper can be applied to any
sequence of interval data, so long as all unique intervals in
the sequence are disjoint. An interesting application is found
in the focal elements of DSM’s for discrete random variables.
Consider, for example, the DSM of [3] for a single Poisson
random variable,Y ∼ Poisson(λ). The posterior DSM for
the rate has focal elements,

λ ∈ [VY , VY+1), (12)

whereVk ∼ Gamma(k, 1). LetGk be theGamma(k, 1) cdf.
For an ordered sequence ofn Poisson counts,(Y(i))ni=1, we
can apply a transformation and invert (12) to obtain an interval
for an auxiliary random variable:

U(i) ∈
[
GY(i)(λ), GY(i)+1(λ)

)
.

The present method can then be used to infer the numberYi’s
not from thePoisson(λ) distribution.

As noted in section III, the run time for this method was
relatively long, even for small images. However, most of this
time appeared to be spent on Monte Carlo estimation of (10)
rather than maximization. While the algorithm in [8] lends
itself to parallelization that could yield significant speedup in
the maximization, future work should first consider an efficient
approximation to the distribution ofg(U). One possibility is
the distribution oflog(max g(u)−g(U)), which appears to be
approximately Gaussian.
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