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Abstract—A new method for inferring the number of signal  with consideration of future applications and directions for this
pixels in an image is presented. The background pixels are method.
assumed to be independent and identically distributed Gaussian
random variables quantized to an integer value. Uncertainty II. CREDIBLE AND MAXIMAL BELIEFS
about the distribution of pixels in an image is represented . L
in a Dempster-Shafer Model. In this setting, a model for the  Consider a DSM for making inferences about the mean of a
distribution of signal pixels is not necessary. The method of Gaussian distribution from a single observatighy~ N (6, 1).
Maximal Belief is used to ensure that inferences behave according We use the auxiliary equation = 6 + cIrl(U), to define

toa f_requency interpretation. The new method is _demonst_rated a posterior DSM with focal elements indexed by an auxiliary
on simulated data and compared to a Bayesian multiscale random variabld/:

segmentation method using cryo-electron microscopic images.

Application of this method to other coarse data problems is -1

dig?:ussed in the conclusion. P Mx(U)={0:0=X-2¢=(U)}, U€[01], (1)
Keywords: Coarse data, cryo-electron microscopy, image where ®~! is the inverse function of the standard Gaus-
processing, maximal belief, multiple testing. sian cdf. The mass for each focal element is defined by a
Unif(0,1) distribution for U. For any assertion of interest,
such asA = {6 < 6y}, we have

In this paper we present a method for inferring the number

I. INTRODUCTION

of signal pixels in an image. This is an important task in px(A) = Pr{Mx(U) C A},
situations where a large number of images are available, but

many contain only background noise. For example, a telescope ax(A) =Pr{Mx(U) € A°}, and
may produce thousands of images while scanning the sky, but

only a few contain images of stars or other interesting emission rx(A)=1-px(A) —gx(A) =0.

sources. By first filtering out the images with low signal pixel . . i _

counts, subsequent analyses can be focused on images that discussed in[[5],[17], some assertions lead(og, )

likely to contain something interesting. that would not have a sensible frequency interpretation over
To accomplish this goal, we assumed that backgrouﬁ‘apetitions of the same experiment. The following credibility

pixel values can be modeled as quantized Gaussian randdiffia@ were proposed in][7] to givep.q.7) a frequency

variables. Uncertainty about the distribution of each pixel wadterpretation:

represented as a Dempster-Shafer Model (DSM:; [3], [6]) andPefinition 2.1 (Credibility): Given an assertiond, a DSM
the method of Maximal Belief (MB;[[7], [[5]) was applied'S credible at leveh for inference aboutd if

to ensure that the resultingp, ¢,r) behaved according to voe A, Pr{px(A)>1-0a}<a, and 2)
a credible frequency interpretation. Sectiph Il describes the - B

credibility criteria and the application of MB to create credible Vo p S1_ql< 3

DSM'’s. The specific DSM and inference procedure used in the €4, Hax(A4) af s a ®)
present problem are discussed in secfign Il . Essentially, [[2) says that if we decideis true wherpy (A) >

Finally, the new method was tested on simulated data- «, then the probability of making the wrong decision is at
and several cryo-electron microscopic (cryo-EM; [4]) imagemosta. When A is actually true, [[3) says that there is at most
Cryo-EM methods are capable of displaying biological struex probability of being wrong if we decidel is false because
tures at a level of detail close to the atomic scale. Howevery (A) > 1 — a.
the process is known to be very noisy and therefore serves afor some assertions, such as the point assediea {§ =
an interesting test case for the method presented here. Fak B definition [Z.1 is not satisfied using DSN] (1). The MB
comparison, the cryo-EM images were also segmented usmgthod introduced by[][7] expands each focal elements in the
a Bayesian multiscale random field method [1]. The results DSM to be just large enough so that the resultipgg, r)
these studies are discussed in secfidn IV . Sedfion V concludél be credible for any assertion of interest. To expand focal



elements, we use a random set, suctb@lg) = {U* : |U* — set can be used to expand the focal elements and nfipke (7)
0.5| < |U — 0.5]}. See [¥] and([[5] for discussion of how tocredible. ForU € S;7, the random set in[8] is defined as
chooseS(U). Applying S(U) to DSM (1) yields expanded . .

focal elements: Sn(U) ={U* €8y : g(U*) = g(U)},

MyU)={0:0=X—d (u),uec SU)} where
=[X - cIrl(O.E)_l— |U —0.5]), g(uw) = [a; In(u;) + b; In(1 — ;)] ®)
X =27 (05+|U-05)] (4 =

These expanded focal elements are still indexedlbye With a; = (n—i+0.7)"" andb; = (i —0.3)~". This random
[0,1] and the mass for each element is still defined by tt&€t always contains the point,

Unif(0,1) distribution. Under the conditions discussed[in [7], a1 an
DSM (@) satisfies definitioi 2.1 for every assertion. argmax g(U) = <a1 T e b ) :
[Il. A CREDIBLE DSM FORDETECTING OUTLIERS which is close to the point of marginal medians for ordered

In the present study we assumed that each pixel was quéti/(0, 1) random variables,U), ..., U(n)). Smaller values
tized by rounding to the nearest integer valiec [0, ..., 255] Of 9(U) imply & larger marginal interval for eadH;). Finally,
(rounding up in the case of exactly 0.5 fractional part). Was 9(U) approaches—-oco there must be at least oné;
wished to make inference about the distribution of the undéPProaching{0,1}, and thus,S(U) expands to cover the
lying random variable X, for which the quantizing processWhole of S;. Applying the random set., (U) to () results

gives the interval, in the credible posterior DSM introduced if| [8] with focal
elements,
Xe|X-05X+05). (5) N
[ ) MEXi}(U) ={FeC:g((F(Xu))i) > 9U)}.

We assumed that background pixels were independent
identically distributed (i.i.d.) fromN(u,0?). The inference
procedure presented here does not require any assump
about the distribution of signal pixel values. Before extendi
this method to interval observations, we first discuss the
method developed ir][8] for point observations.

aﬂﬂa mass for each unique focal element corresponds to the

distribution ofg(U). Intuitively, the highest probability region
P@(U) corresponds to the most likely orderé&thif(0,1)

mples.

To infer the number of outliers of the cdf, in a sample of

size N, [[7] and [8] computdp, ¢, r) for the sequence of asser-

tions, A, = “at leastk X;’s are outliers ofFy” (k = 1,..., N).

, , _ For pixels distributed asV (i1, 02), Fo(z) = ®(*£). In this

Suppose that the values of the underlying Gaussian varlaEeogeAkc — “there are at leasN —k+1 X;'s fromUN(u, a2)"

were exactly known_instead of b]\?ing in an interval._ F_or Bquivalently, if we transform the orderedl;)’s according
sample ofN observations, letX;);=, be the order statistics to @) then AC — “at least N — k + 1 Ugy's are ordered

and apply the transformation, Unif(0,1) random variates.” Formally, fof < N, let

A. Inference with Point Observations

Xiy—p i . .
U(z) :‘I)<+) (6) U%:{(U(il),...,U(iNij)) 1 <4 < ... <IN—j SN}

If {X;}N, are i.i.d. samples from th&/(u, o%) distribution, be the set of all length’ — j) subsequences i), .
then (U)X, is a sequence of orderddnif(0,1) random The negated assertion can be representedjn, , as
variables. AnyX; not from N(u,0?) can be considered an A{ = Uk, For A{ to be false (andAj true), it would

outlier. be sufficient to show that no elements i, " are ordered
A credible DSM for the cdf of a sequence of independeidtn:f (0, 1) variates. Of course we do not know with certainty
samples{X;}7_,, is given in [8]. Let which elements o5, ! come fromUni f(0, 1) and which do

not. Therefore, computingx (Ax) amounts to computing the
belief that none of the sequencesUﬁ,‘1 are ordered samples

be the space of all orderednif(0,1) samples of size from Unif(0,1).

n. To represent uncertainty aboEt the cdf {)X_q;}i:l i.i.d. px(Ar) = Pr{Sn_pi1(U) C A}
observations, one could ugé € S; as an auxiliary random o c
=Pr{A; C [Sn-x1(U)]7}

variable to create a DSM with focal elements,
= Pr{U} " C [Sn-r1(U)]°}

SF={(u1, . un) 0 <uy < ... <u, <1}

M{Xl}(U) - {F eC: (F(X(Z)))ZZI - U}’ (7) — Pr {V’LL c Uﬁ;l, g(u) < g(U)}
whereC is the set of all continuous cdf’s. However, this DSM
does not produce credibl@, ¢, ) for an assertion such as = Pr{ mztxlg(u) < g(U)}. 9)
A={F:F = Fy}. According to the MB method a random uely



Since|U | = (%) and Sy 441 (U) is almost surely uncount-

able,

ax (Ar) = Pr{Sy_r+1(U) C A{} = 0.

IV. RESULTS
A. Simulation Study

First, the method of sectioplll was used to replicate the
simulation study of [[7], but using coarse data. The variates,

Thus, 7y (Ax) = 1 — px(Az). An algorithm for finding the Xi ~ N(ui, 1) (i = 1,...2100), were generated according to
maximum of g(u) in (8) is given in [8] and the probability @€ Of the following regimes:

can be estimated using Monte Carlo simulation.

B. Inference with Coarse Observations

(@ p1, e pr100 =0

(b) 1y eeey fioo =0 and fori = 91,...,100, p; ~ 2+El‘p(1)
() p1,-.-, oo = 0 and fori =91, ..., 100, pu; ~ 4+ Exp(1)
(d) g1, ..., o0 = 0 and fori = 91, ..., 100, u; ~ 6+ Exp(l)

In the present problem, where only the quantized pixglach observation was rounded to the nearest integer, giving the
values, {X;};Y,, are observed, applying the transformatiofhterval in ($). Ten simulations were performed for each of the

(B) gives the following interval for eacti;:

Xy —0.5— Xy 405 —
ag g

four regimes. For each simulation the sequefiee(Ax)}2L,

was computed. These sequences are plotted in[Fig. 1. This
study was implemented in R and it took approximately 57
minutes to complete all forty simulations on a desktop PC
with 3.25 GB of RAM and a 3.0 GHz processor.

The method of [J8] can be applied here as well, even thouah

the U(;) values are not precisely known. Let

W?V = {(wil,...,wmﬂ) 1< << iN_j < N}

Then,
A ={U* € S§_ppy : IW e WL U* e W)
and

px(Ax) = Pr{A{ C [Sy_r1(U)]7}

= Pr{ max sup g(u) < g(U)} , (20)

Wewh !t uew
whereg is defined as in[{8). Note that
a; In(v) + b; In(1 — v)
is concave inv and for eachw; € W,

sup a; In(v) + b; In(1 — v)

vew;

can be found analytically. Therefore,

N—k+1
sup g(u) = Z sup [a; In(v) + b; In(1 — v)]
ueW j=1 VEW;

can be computed analytically. The supremumg6f) over

(a) (b)

I L L L

plat least K outliers)

00 02 04 06 08 10

6:0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 0-9-0-0-0-0-0-0-0-0-0-0-0

P
5
5
5
s
=

L

plat least K outliers)

©0-0-0-0-0-0-0-0-0-0-0

00 02 04 06 08 10

00 02 04 06 08 10

Figure 1. Replication of the study in][7], but using the method of section
[Mand quantized data.

B. Cryo-EM Image Study

Next, the method was applied to cryo-EM images. Three
images were chosen to represent high, medium, and low
guantities of signal pixels. Each image wagl x 216
pixels. The quantizing model in[J(5) was assumed. Esti-
mates of the noise parameters, and %, were obtained
from a sample of each background region. For each im-
age, the sequencépx (A v )} was computed withy =

W e Wkt in (£0), can be found by using the algorithm 0f).05,0.10, 0.15, ..., 0.80. These sequences (upde= 0.5) and

[8] with (1) as the objective function.

the images are shown in Fifj. 2. Implemented as C functions

In practice, to estimate the number of signal pixels in atalled from R, each image took approximately 3.8 hours to

image of sizeN one could use a binary search over=

process on a server with 12 GB of RAM and a 2.83 GHz

1,...,N to find ko = max{k : px(Ax) > 1 — «a}. The choice processor.
of a depends on the acceptable level of risk in overestimatingAdditionally, for each image a binary search was performed

the number of signal pixels.

to find kg o5, the estimated number of signal pixels. Because



14 taken manually from each signal region. Fjg. 3 shows each
i image with the estimated background pixels’ values set near
8 1 for both the present and SMAP methods.

s V. CONCLUDING REMARKS

o \ As a tool for segmentating the signal and background in
e S cryo-EM images, the present method performed comparably
— 7 to the multiscale Bayesian methdd [1] implemented in SMAP
5 10 15 20 25 30 35 40 45 50 .
[2]. However, one advantage of using the present method
is that it requires no information about the distribution of
the signal pixels. The SMAP package, on the other hand,
= estimated the signal distribution using a Gaussian mixture
8 model and training samples from the signal region. In the cryo-
EM images, it was relatively easy to find a large, representative

p(at least x% of pixels are signal)
1

Percent

— 2 background sample. This is often more difficult for signal
5 L] | regions. Ultimately, any manual sampling defeats the purpose
: 7 \ of using this method for automatically filtering out images
% S with a low number of signal pixels. Therefore, future work

i T\T\T\T‘T*T*T should consider simultaneous estimation of the background
s 10 15 20 25 3 3 4 4 so  distribution and detection of outliers from that distribution.
Percent The method presented in this paper can be applied to any
sequence of interval data, so long as all unique intervals in
the sequence are disjoint. An interesting application is found
qee T in the focal elements of DSM’s for discrete random variables.
E Consider, for example, the DSM of] [3] for a single Poisson
T random variableY ~ Poisson(\). The posterior DSM for

the rate has focal elements,

p(at least x% of pixels are signal)
L

5 . A€ W, Vi), (12)

s ] \._._, whereVy, ~ Gamma(k,1). Let Gy, be theGamma(k, 1) cdf.

s 1o w5 s o s x FOranordered sequence ofPoisson counts(Y(;)i,, we
Percent can apply a transformation and invert](12) to obtain an interval

for an auxiliary random variable:

Figure 2. Results for cryo-EM images with low (top row), medium (middle .
row), and high (bottom row), amounts of signal pixels. The left column shows U(Z) < [GY(” (), GY“')'H (/\)) ’

i il image wih the ackoround sample fegon o estmatid . The present method can then be used to infer the nuiter
for ¢ = 0.05,0.10,0.15, ..., 0.50. not from the Poisson(\) distribution.
As noted in sectioridll, the run time for this method was
relatively long, even for small images. However, most of this
a background pixel is independent of all other pixels, it igme appeared to be spent on Monte Carlo estimatior df (10)
uncorrelated with its neighbors. For a given pixelye defined ather than maximization. While the algorithm il [8] lends
a neighborhoodgi, as thels x 15 square around, but notjise|f to parallelization that could yield significant speedup in

including pixel i. We then calculated the following measurgnhe maximization, future work should first consider an efficient

of correlation between the pixel and its neighbors: approximation to the distribution of(U). One possibility is
(i = p)(x) — p) the distribution oflog(max g(u) — g(U)), which appears to be
8i = Z m ’ approximately Gaussian.
jeoi
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