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Abstract—In the framework of the theory of belief 

functions, several rules have been defined to combine 

the considered evidences, for instance the orthogonal 

sum of Shafer, the conjunctive rule defined by Smets, 

the hybrid rule proposed by Dubois and Prade and 

more recently the cautious rule defined by Denoeux. In 

this study, having shown that none of these rules is 

systematically better than the others, several 

combination rules are put in competition, and the 

partial decisions coming from each rule are combined. 

This latter combination corresponds to a second level 

of fusion having logical sources given by the different 

combination rules. Its interest relative to decision 

making from only one combination rule is clearly 

stated on the considered examples. 

Keywords: Evidence theory, combination rules, logical 

sources, two-level fusion. 

I. INTRODUCTION 

The framework of the evidence theory [1] is now 

widely used for data fusion since it allows modelling the 

absence of information when sources only deal with a part 

of the discernment space (e.g. [2]). Using evidential 

framework, different combination rules are possible: in 

particular, the initial Shafer combination that redistributes 

the conflict on every focal assumptions, the conjunctive 

combination defined by Smets that keeps the conflict on 

∅ hypothesis, the Yager rule and Dubois and Prade one 

that redistribute the conflict on specific compound 

hypotheses. Then, having combined the sources, a 

decision should be taken. Once more, several decision 

rules are possible, depending in particular on the set of 

hypotheses between which the decision should be taken 

(typically only singleton hypotheses or also compound 

hypotheses). Here, we propose to take advantage of the 

numerous combination rules to construct a new decision 

rule in order to obtain a more robust final decision 

eventually in favour to compound hypotheses. 

In Section 2, the considered combination rules are 

briefly presented, and we show that none of them gives 

better results than the others in a systematic and 

significant way. Section 3 discusses the interest of a 

second level of data fusion combining the results obtained 

considering different combination rules. Section 4 

illustrates the proposed approach showing some result 

examples. Section 5 gathers our conclusions. 

II. COMPARISON OF SOME COMBINATION RULES 

Let us focus on the problem of |Θ| singleton hypotheses 
(where |.| denotes the cardinal of a set), and n logic 

sources, noted Si (i∈{1,…,n}) In the framework of the 

evidence theory, the handled assumptions are the Θ 
subsets, i.e. {H: ∅⊆H⊆Θ}. We denote mi (i∈{1,…,n}) 

the mass function (or basic belief assignment bba) 

associated to source Si. These are combined using one of 

the following combination rules. 

The ‘orthogonal sum’ was firstly defined by Shafer [1] 

to combine evidences. Then, Zadeh [3] pointed out its 

main drawback as masking the conflict between sources 

and Smets [4] proposes to remove the normalization in the 

orthogonal sum. Now, the so-called ‘conjunctive rule’ 

drawback is that the conflict increases with the number of 

sources combined. Thus, some rules, namely the ‘Yager 

one’ [5] and the ‘hybrid Dubois and Prade rule’ [6], have 

proposed to redistribute the conflict on compound 

hypotheses.The mathematical expression of these rules for 

two sources Si and Sj (bbas mi and mj) and a discernment 

space noted 2
Θ
, with Θ the union of all singleton 

hypotheses and ∅ the empty set is as follows: 

Conjunctive rule [4]: 
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Yager rule [5]: 
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Hybrid rule [6]:  
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Conversely to orthogonal sum and conjunctive rule, the 

Yager rule and the hybrid combination rule are not 

associative. Indeed, let us consider three sources Si and the 

associated bbas mi, i∈{1,2,3}, and two hypotheses A and 
B, then the term m1(A)m2(A)m3(B) will contribute to A∪B 
mass if S1 and S2 are firstly combined (and then S3) and to 

A mass if S1 and S3 –resp. S2 and S3– are firstly combined 

(and then S2 –resp. S1). According to the hybrid rule 

principle, as long as two sources are not conflicting, both 

are reliable, but when they are conflicting, only one is 



 

reliable. In this latter case, the right hypothesis belongs to 

the union of the conflicting hypotheses, and a third source 

is necessary to raise the ambiguity. Now, considering the 

three sources at once and X, Y, Z∈2Θ, one can either 
assign the mass product m1(X)m2(Y)m3(Z) to X∪Y∪Z mass 

when X∩Y∩Z=∅ (the generalization to more than three 

sources is immediate), or follow the principle of the 

‘third’ source raising the ambiguity, similarly to a ‘3-

source voting’ rule [2]. 

Lets note |W| the cardinal of a set W, {X,Y,…,Z} a n-

uplet of hypotheses of the space of discernment 2
Θ
, and 

{W∈2Θ:H⊆W} the set the hypotheses (singletons and 

compound hypotheses) including the singleton hypothesis 

H (|H|=1). Then, |{X,Y,…,Z}∩{W∈2Θ:H⊆W}| is the 

cardinal of the subset of the n-uplet {X,Y,…,Z} including 

H hypothesis. In the following, it is noted |{X,Y,…,Z}∩H|. 

Finally, we define a ‘dominant’ hypothesis H for the n-

uplet {X,Y,…,Z} as a singleton or compound hypothesis 

such that: 
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In the following, we call this combination rule the ‘n-

voting’ rule. It is a generalization of the ‘3-source voting’ 

rule presented in [2] in the case of three sources and three 

hypotheses, allowing mass expression specification. Note 

also that in the case where n equals 2, the ‘n-voting’ rule 

reduces to the hybrid rule [6]. 

Property: according to the q-ordering or the pl-ordering, 

the bba resulting of the ‘n-voting’ rule, noted bban-voting, is 

more committed (MC) than the bbas resulting from the 

Yager rule, noted bbaYager, and than the bba resulting from 

the Dubois and Prade rule, noted bbahybrid. 

Proof: H dominant for {X,Y,…,Z} ⇒ H⊆X∪Y∪…∪Z, 
thus from a bbahybrid to a bban-voting, mass has been 

redistributed only from compound hypotheses X to 

included hypotheses H⊆X, thus ∀H⊆Θ, qn-

voting(H)≥qhybrid(H), thus bban-voting is q-MC than bbahybrid. In 

the same way, we show that bban-voting is pl-MC than 

bbahybrid, and since bbahybrid is q&pl-MC than bbaYager , so 

does bban-voting by transitivity. � 

Previous rules assume that the sources are independent. 

When it is not the case, the cautious rules that are 

idempotent and able to combine non-distinct evidences 

are preferable. Recently, [7] proposes a cautious rule 

based on the canonical decomposition of bbas that allows 

estimating the source correlation in every non-dogmatic 

case: 
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Figure 1 shows, for three different kinds of data, the 

repartition (in percentage) between Right Decisions (RD) 

and False Decisions (FD) obtained using rule Rj, among 

the False Decisions obtained using rule Ri. In every case, 

three sources and three hypotheses are considered, after 

combination the decision is taken according to the 

maximum of pignistic probability [4], and the number of 

data samples for one simulation (1, 2 or 3) is 100000. For 

simulations 1 and 2, the sources are independent and the 

mean class distance ranges from 2 to 1, the class variance 

being constant and equal to 1. In simulation 3, the class 

parameters are the same as for simulation 1, but the 

sources 1 and 2 are partially correlated, and the class 

standard deviation of source 3 is 0.1. 
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Figure 1: % of Right Decisions (RD) and False Decisions 

(FD) using combination Rj, among the False Decisions 

using rule Ri, noted Rj/Ri_FD, with (i,j)∈[1,5]×[1,5], i≠j, 
R1: conjunctive rule, R2: Yager’s rule, R3: hybrid rule, 

R4: n-voting rule, R5: cautious rule. In simulations 1-2, 

sources are independent conversely to simulation 3 case. 

First of all, we check that in no case the repartition 

between RD and FD is 0%-100% (nor 100%-0%), that 

means that whatever the considered combination rule, 

there are some errors done that are not done considering 

another combination rule, in other words there is no 

universal combination rule. Second, we note that some 

combination rules are more redundant than others: for 

instance, the cautious rule is much less correlated to the 

other rules than the others between themselves. We also 

note that this ‘correlation’ between combination rules 

does not clearly depend on the simulation whereas the rule 

performance does. In particular, the cautious rule is 

efficient only in the simulation 3 case (more precisely, the 



 

rates in % of RD are as follows: simulation 1: R1: 78.3, 

R2: 78.1, R3: 78.3, R4: 78.5, R5: 71.3; simulation 2: 

R1: 57.8, R2: 57.6, R3: 57.8, R4: 58.0, R5: 52.8; 

simulation 3: R1: 70.3, R2: 68.8, R3: 69.0, R4: 69.8, 

R5: 71.2). Indeed, the right hypothesis has a higher 

probability to be designed by several sources, and in the 

absence of actual correlation between sources, it is 

detected as such. Now, using the cautious rule close 

beliefs (e.g. designing a same hypothesis) would be 

considered as non-independent and considered only once, 

preventing the accumulation of evidences on the right 

hypothesis. This is why some authors have proposed a 

variant of the cautious rule, namely the cautious adaptive 

rule [8], that is able to take into account the actual source 

correlation through a parameter. In the following, we will 

try to take advantage of the complementarity of the 

combination rules to improve the performance of fusion. 

In conclusion, some general evidence properties, such 

as the independence or the level of conflict, should be 

considered in the choice of the combination rule. 

Therefore some authors (e.g. [9], [10]) have proposed a 

hierarchical approach with different combination rules 

used for different source clusters and fusion level. 

Besides, we also see that the exact performance of the 

different combination rules relative to each others remains 

unpredictable. Therefore, we consider them as as many 

sources having their own imprecision and uncertainty. 

III. SECOND LEVEL OF FUSION 

A. Principle 

In this study, we propose a two-level fusion scheme as 

shown on Figure 2. The first-level sources are classical 

data sources, for instance measurements done by different 

sensors, or outputs of different data processing algorithms. 

At the first level, these sources are combined using the 

different evidential combination rules and produce as 

many outputs of the fusion first-level. These first-level 

outputs are the inputs of the fusion second-level, which 

are thus combined to obtain the second-level output.  

Introducing a second level in fusion, one important 

point is the formalism to use for this level. In data fusion, 

combination rules are generally classified between rules 

that produce more committed information, and rules that 

produce less committed information. For instance, the 

Smets conjunctive rule [4] and the Denoeux cautious rule 

[7] belong to the first kind of combination rules, whose 

generic name is ‘conjunctive’. Examples of the second 

kind of rules are the classical disjunctive rule, obtained 

replacing ∩ by ∪ in Equation (1), or the bold disjunctive 
rule [7]. In the Yager rule, the conflict is reallocated to Θ, 
thus ∀H⊆Θ, plY(H)=pl∩(H)+m∩(∅), and 

qY(H)=q∩(H)+m∩(∅), where pl() and q() are the 

plausibility and the commonality functions respectively, 

and the subscript refers to the used combination rule, 

Yager’s or conjunctive. Thus, the Yager rule produces a 

bba less committed than the conjunctive one, but in the 

general case nothing can be said concerning the ordering 

relatively to the initial bbas. The same occurs for the 

hybrid rule result: more committed than the Yager one 

and less committed than the conjunctive one, but either 

less or more committed than the initial bbas. 

Now the basic idea of the two-level of fusion is as 

follows. At first level, there may be some so-called 

‘erroneous’ strongly noised measurements that we aim at 

filtering by comparison with other data measurements. For 

this, we used one of the considered combination rules: 

conjunctive, Yagers’, hybrid, n-voting, or cautious. 

Indeed, when the ‘erroneous’ measurements are in 

minority number and when they are considered at the 

beginning of the data fusion process in the case of non-

associative rules, previous rules provide a bba where the 

impact of the ‘erroneous’ data sources has been smoothed. 

Then, the second level of fusion aim at taking advantage 

of the dispersion of first data fusion results to confirm or 

to refute the decision that could have been taken after the 

data fusion first-level. In other words, we consider that 

each first-level data fusion process is a data source that 

can be combined with other similar data sources to make 

the final decision more robust.  

Now, these second-level sources can be considered as 

much more reliable than initial data sources, due to the 

data fusion first-level that filters the ‘erroneous’ 

measurements as explained. Thus, in most cases, they are 

not conflicting, and conflict mainly indicates that the bbas 

do not highlight one hypothesis but several ones, and that 

a precautionary principle could be to not decide between 

highlighted hypotheses. In such perspective, there are two 

key ideas of this second-level fusion: first one is ‘rather be 

imprecise than wrong’, and second one is ‘conflict is an 

indicator of ‘wrong’ ’. 

Finally, as illustrated on Figure 2, the second level of 

fusion can be performed either considering the bbas bi 

computed using the combination rule Ri at fusion first-

level, or considering the partial decisions d(Ri) associated 

to the bi. In the following, we present two examples of 

fusion at second-level, the first one from d(Ri), and the 

second one from bi. 

1
rst

 

level 

2
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Data 1 Data 2 Data n 

R1 R2 Rp 

2
nd

 level of 

fusion 

b1 b2 bp 

m1 m2 mn 

Final decision 

d(Rp) d(R2) d(R1) 

Figure 2: Scheme of the two-level fusion, in the case of n 

initial data sources and p combination rules; partial 

decisions using combination rules Ri are obtained as d(Ri). 



 

B. The consensus rule 

In previous section, we define two key ideas for the 

second-level fusion using words ‘imprecise’ and ‘conflict’ 

that are now defined in the case of partial decisions. Here, 

the word ‘imprecise’ is defined equivalently in terms of 

cardinal of the decided hypothesis or commitment of the 

associated bba. Indeed, if we associate a Simple Support 

Belief (SSB) mi to decision Hi such that mi(Hi)=1-ai, 

mi(Θ)=ai, then the ordering between decisions and the 
ordering between these SSB bbas are consistent. Then, by 

extension of notation we said a decision in favour of an 

hypothesis H1 is more committed, or more precise, than a 

decision in favour of an hypothesis H2 if H1 is strictly 

included in H2 (H1⊂H2, thus |H1|<|H2|). The association 

between decided hypothesis and SSB also allows defining 

the conflict: two hypotheses are conflicting if the mass of 

the empty set is non-null after conjunctive combination of 

their SSB, what boils down to the fact that their 

intersection is empty. 

Here, we define the so-called ‘consensus’ rule that 

decides for the more committed hypothesis (singleton or 

compound), noted H
~
, that is not conflicting with the 

partial decisions [ ]
iR

mH
~  obtained considering the bbas 

derived using combination rules Ri,. It writes: 
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We emphasize that the result does not depend on the 

number of sources ‘voting’ for a hypothesis, this is all the 

more important that the second-level sources are 

combination rules that may be not independent.  

Let us also stress that defining such a decision rule 

revives the interest of having different combination rules 

at our disposal. In [11], R. Haenni criticised the interest of 

defining other combination rules than the orthogonal sum. 

Now, in the absence of an ideal solution (remind that even 

the orthogonal sum has been criticised [3]), considering 

several solutions is the very principle of fusion: each 

solution is assimilated to a data source and it is assumed 

that, in average at least, the decision taken considering all 

data sources is more optimal than any decision derived 

from individual sources. 

C. The compromise rule 

First, note that the principle of the so-called ‘consensus’ 

rule is similar to either the hybrid combination rule –in 

case of conflict between the beliefs in different 

hypotheses, the beliefs are reported on the compound 

hypothesis– or the disjunctive rule. Indeed, the consensus 

rule can also be obtained from one of these two 

combination rules provided that (i) associating to each 

[ ]
iR

mH
~  a SSB such that ai<<1; (ii) decision can occur also 

in favour of compound hypotheses, for instance as it will 

be defined latter; and (iii) in the combination, all the SSB 

are considered at once (only necessary for the hybrid 

rule). 

In a similar way that the n-voting rule was defined to 

obtain a more committed (but not conflicting) result than 

those provided by the hybrid rule, we now investigate the 

possibility to have a decision both non-conflicting with 

and more committed than the consensus one. 

Several ways to define a compromise rule were 

investigated. The first one was to try to remain in the 

evidential framework, and to apply one evidential 

combination rule: disjunctive rule, bold (disjunctive) rule, 

hybrid rule… In the following we only present some 

results obtained with the disjunctive rule. As explained 

latter a critical point is the decision rule to apply to the 

obtained bba. 

The second way was to define an ad-hoc decision rule 

considering the different bbas. As tested ad-hoc decision 

rules work as follows: for each singleton hypothesis H 

chosen by at least one of the partial decisions (i.e. 

included in the consensus decision), they compute an 

index I(H) that will have to be maximized. For instance 

I(H) may be the maximum of pignistic probability among 

the partial bbas having decided H, or it can be the ratio 

between the maximum of pignistic probability and the 

second maximum of pignistic probability (still among the 

partial decisions), or the logarithm of the previous ratio… 

Then, the ad-hoc decision includes the singleton 

hypothesis that maximizes I(H) and all the singleton 

hypotheses that are closer to the ad-hoc decision than a 

threshold t: 
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In our case, the index of a compound hypothesis is the 

minimum of the indices of the included singleton 

hypotheses. 

Note that in the case of the disjunctive second-level 

rule, this decision criterion was also applied simply 

defining I(X)=BetP(X) for X singleton hypothesis. 

However results will show the lack of robustness applying 

such a decision criterion to a single bba. 

IV. EXAMPLES OF RESULTS 

In this section, we estimate the performance of the 

proposed approach on simulated data.  

A. Data simulation and performance criterion 

In all our simulations, we consider three (initial) 

sources and three singleton hypotheses in {A, B, C}. 

Every distribution is assumed to be Gaussian with 

standard deviation equal to 1 and class distance varying 

between 0.5 and 3. 

Three kinds of mass allocation were considered. In the 

two first cases, for each data sample, the conditional 

probabilities to the classes (singleton hypotheses) are 

respectively either allocated to the corresponding 

singleton mass or distributed between corresponding 

singleton and the consonant compound hypotheses but Θ, 
before global discounting. Thus, on Figure 3, the mass 

functions cover the two lines when the global discounting 

coefficient a varies. The third mass allocation is as 

follows: for each class A, a consonant mass function is 

constructed with focal elements assumption including A, 



 

and then all these mass functions are combined according 

to the orthogonal sum.  

 
Finally, in the three mass allocation cases, a random 

Gaussian centred noise is added on mass functions before 

re-normalization of these latter. 

Performance is computed through the following score 

value: 
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where Ntest is the number of data random samples for 

one simulation, namely 100000, ( )kH
~  and ( )kĤ  are 

respectively the estimated hypothesis (in {A, B, A∪B, C, 
A∪C, B∪C, A∪B∪C}) and the true hypothesis (in {A, B, 
C}) for sample k, and c(.,.) is a cost function. In our case, 
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Thus the score may vary between -100 and 100, and the 

higher the score value, the more performing the evaluated 

algorithm. From score definition, we are able to evaluate 

not only decision in favour to a singleton hypothesis but 

also in favour to compound hypothesis. More precisely, a 

hypothesis is said ‘correct’ when it is not conflicting with 

the true hypothesis (it includes it from § III.B. definition 

of conflict between hypotheses and the fact the true 

hypothesis belongs to the singleton set), and its 

contribution to the score (to be maximized) is as important 

as it is precise (still as defined in § III.B), and it is said 

‘wrong’ when it is conflicting with the true hypothesis (no 

possible belief transfer) and its contribution to score is 

negative (or null). 

B. Results 

Figure 4 upper shows the score versus the distance 

between class centres and for mass allocation case one, for 

different combination rules. The dashed curves indicate 

the results after the first level of fusion (using maximum 

of pignistic probability as decision criterion) and the 

continuous curves show the results obtained by the two-

level fusion, either using the consensus rule or one of the 

compromise: ad hoc compromise or disjunctive one. 

Obviously the score increases with class centre distance. 

On the lower Figure 4, the difference of score values with 

the conjunctive rule result score are plotted. Positive (resp. 

negative) values correspond to an improvement (resp. 

decline) relative to the performance of the conjunctive 

combination rule. 

First we note that the fusion first-level results are very 

close in term of score but the cautious rule. Indeed, as 

already said, the cautious rule prevents the accumulation 

of evidences that are close and so filters the evidence 

noise much less that other rules.  

Second, concerning the compromise rules versus the 

consensus one, here we only show the best result (i.e. 

inducing the highest score) varying the threshold 

parameter. Thus, the compromise rule score can only be 

greater than or equal to those of the consensus rule (since 

for threshold value sufficiently large the compromise rule 

is equivalent to the consensus rule). On lower Figure 4, 

we see that for class distance values sufficiently large 

(namely 1.8 in the plotted case), the ad hoc compromise 

provides slightly better scores than the consensus rule. 

This confirms the presence of some supplementary 

information in the bbas at the output of the fusion first-

level, information that is not used considering only the 

(first-level) decisions as does the consensus rule. 

Third, concerning the second-level disjunctive rule, 

from Figure 4, results seem amazingly good: for very low 

class distance, the rule has the wisdom to not decide 

between hypotheses achieving a score of 33, and as the 

class distance increases, it becomes more committed 

taking right decisions so that it remains above all other 

score curves. However, as it will be illustrated by the next 

Figure, a strong drawback of this rule is its lack of 

robustness versus mass allocation process. 

Figure 5 shows the score values obtained using the two-

level fusions varying the initial mass repartition through 

the discounting coefficient, a. We clearly see that the very 

high performance of the disjunctive rule is due to the 

‘good’ fitting of a: for a values higher than 0.3, it favours 

too much compound hypotheses (for a=.8, it always 

decides for Θ!), and for a values lower than 0.3, it is close 
to the other 2-level fusion results). Conversely, we note 

the very stable performance of the two other 2-level 

fusions, namely ad-hoc compromise and consensus. 

Here we do not present the results obtained considering 

the other mass allocation processes, since they are 

essentially the same ones: the fusion second-level results 

have higher scores than the first-level ones, the 

compromise rules can achieve even better score than the 

consensus one, however the disjunctive compromise is 

very instable. 

Note that a part of better performance of the 2-level 

fusion relative to the 1-level one is due to the score 

definition and the fact that maximum pignistic probability 

forces decision on singleton hypotheses. Now, the 

definition of a decision rule able to decide also in favour 

of compound hypotheses remains an open question as 

shown by the results obtained with the 2-level disjunctive 

compromise. 
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Figure 3: Representation of two ways to allocate the 

initial mass from class features and data sample. 
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Figure 4: Score (upper) or score difference with 

conjunctive result score (lower) vs distance between 

classes, for different combination rules, namely Smets, 

Yager, Dubois and Prade (hybrid), ‘n-voting’ and 

Denoeux (cautious) combination rules for the fusion first-

level, and consensus, ad hoc compromise (‘compromis’) 

or disjunctive rule for the fusion second-level; case of 

mass allocation 1 and discounting coefficient a=.3. 
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Figure 5: Score versus distance between classes, using 

different 2-level fusions, namely consensus, ad hoc 

compromise (‘compromis’) or disjunctive compromise, 

and for different discounting of initial bbas (cf. Figure 3). 

V. CONCLUSION 

Here we investigate the presence of information in the 

variability of the results produced by the different 

combination rules proposed in the evidence theory. By the 

way, we also a new combination rule is proposed called 

‘n-voting’ rule that allows to redistribute the conflict 

assuming a minor number of sources may be erroneous. 

Essentially, we propose to put in competition the partial 

bbas coming from each combination rule, namely Smets 

conjunctive one, Yager one, Dubois and Prade hybrid 

rule, the proposed ‘n-voting’ rule, and the Denoeux 

cautious rule. Either some partial decisions, derived from 

each of these bbas, are combined according to the so-

called ‘consensus’ decision rule —since partial decisions 

may be not independent, the ‘consensus’ rule simply 

decides in favour of the more committed hypothesis that 

raised the conflict between partial decisions, namely the 

union of these latter—; or these bbas are processed 

(combined or compared) and a rough decision rule able to 

decide in favour of compound hypotheses is applied. 

The definition of the processes of the second level of 

the fusion is still an open research field. However, even 

with the very rough tested processes, we already show that 

there is effectively some information to get from the 

analysis of the results provided by the different 

combination rules. Nowadays this information is used 

mainly to be more cautious and decide for a compound 

hypothesis rather than for a singleton hypothesis. 

Obviously, the degree of cautiousness is linked to the 

score definition: with a cost for an error equal to 0, one 

has nothing to loss to bet for a singleton hypothesis, this is 

why we set this cost to a negative value (which is also in 

agreement with numerous practical applications where an 

error has a non-null cost!). Thus, another perspective is 

the definition of a decision rule able to choose compound 

hypotheses. Then it will raise the question of the 

robustness of such a rule relatively to the two-level fusion 

approach.  
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