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Abstract— Set based methods, such as Dempster Shafer 
Theory and the Transferable Belief model, are widely used in 
fusion applications. Many fusion applications are of an 
iterative or recursive nature, often fusing data with respect to 
an event over time. This iterative or recursive approach does 
not translate well into the traditional set based fusion methods 
as the system can converge and become unresponsive. 
Documentation, analysis nor acknowledgement of these issues 
is readily available. In this paper, we highlight the problems 
that can occur, discussing the reasons for these problems and 
look at a previously suggested solution. We use some suitable 
simple examples to aid in the description.  
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I. INTRODUCTION 

Iterative and recursive processes happen regularly in our 
world. Repeatedly we find the need to monitor these 
processes and events. Often this monitoring task will take in 
more than one source of information. This is a typical 
description of a fusion task.  

 
Traditional set based fusion methods (e.g. DST, TBM, 

DSmT) are commonly used to perform fusion tasks [i,ii,iii]. 
However if the problem is not formulated correctly then 
severe issues will arise that can lead to erroneous results or 
incorrect conclusions that are drawn from them. 

 
Figure 1. The Recursive Fusion Process 

 
The main purpose of this paper is to highlight the issues 

that can arise from making inappropriate decisions to fuse 
data using set based methods in a recursive and iterative 
manner. One possible solution to this was proposed 
previously by the authors [iv]. A method of convergence 

protection was developed while tackling other fusion based 
problems. The issue of convergence was noted and an 
attempt to counteract it devised. The analysis of the act of 
convergence was not thoroughly investigated, nor an 
adequate solution found. 

II. PAPER OUTLINE 

In Section III we revisit the basics of DST and its various 
incarnations. We also look at how combination is generally 
carried out within DST and how this type of combination 
can skew results. In Section IV we look at the issues that can 
arise from iteratively and recursively using these rules for 
combining information. Highlighting where care needs to be 
taken when using DST based methods. In Section V we 
conclude  

III.  SET THEORETIC APPROACHES 

Early work by both A.P.Dempster [v] and Glenn Shafer 
[vi] later became known as Dempster Shafer Theory (DST). 
DST is a generalisation of Bayesian Theory and it states 

 
1. beliefs are created from subjective probabilities 
2. information is fused using Dempster’s rule of 

combination 
 

The basis of the work in DST has been taken and 
extended by other parties [vii,viii]. This basic framework has 
evolved into various mutations, but they share the same core 
idea. One such framework is the Transferable Belief Model 
(TBM) [vii] and we shall base the rest of the discussion on 
this to highlight the empty set issues, where appropriate we 
will compare and contrast to other approaches.  

A. Basic Elements of the Transferable Belief Model 

The TBM is a set theoretic approach, such as discussed 
previously. The TBM splits the set theory into two stages. 
Firstly the credal level where your beliefs are entertained 
and quantified by belief functions. Secondly, the pignistic 
level where those beliefs are used to make decisions and are 
quantified by probability functions.  

For illustration purposes lets consider a simple weather 
example: Let us assume that all of the possible weather types 
that we are going to account for in our world are wind, snow 
and rain. Therefore, the set of all the possible types of 
weather we know about is given by 
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To this we apply a basic belief assignment (bba)  
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where m(A) is the basic belief mass (bbm) given to A.  
 
This is a method of assigning masses to each of the subsets 
of Ω to signify our belief, or that there is evidence showing 
that the truth is somewhere within that set, not necessarily 
equal to but, within that set. Each of these sets is in fact a 
hypothesis. Any set that has a bbm > 0 is called a focal set, 
and any focal set that only has one member is called a 
singleton set. The more members within a focal set the more 
the ignorance, or uncertainty about which single state is 
true.  

One of the possible subsets of Θ is the empty set ∅ . 
Values assigned to it carry various meanings which depend 
on whether we are working within an open or closed world. 
A closed world is one where we assume that we have 
modeled every possible outcome and that we have full and 
complete knowledge about our problem space. Every 
possible outcome that we are considering is included in Ω. 
Values given to the empty set in this case are due to 
imprecision and thus it is just redistributed after any data 
combination. In contrast an open world assumes that we do 
not know everything about the world we are modeling and 
we accept that there is a possibility of something else 
existing. If the world is open then we have accounted for 
everything we know about in Ω, but also accept that there 
may be something else in the world that we don’t yet know 
about (for example, sun), and this is given by the empty set, 
∅ .  

Traditionally DST approaches take place with a closed 
world [ix] and TBM an open world [x].  

B. Combining Data 

If we have more than one piece of data from the same 
source over time, multiple sources at the same time, or even 
multiple sources over time, then it is normal that we will 
want to fuse or combine all of this data. This combination 
will enable us to make a more informed decision, using all 
available information, as opposed to just looking at a single 
piece of evidence. An example of such a task would be 
predicting the weather based on previous weather data and 
current forecasts from multiple sources. We want to 
recursively combine, or fuse, this weather forecast data, 
before we make an educated decision on the most likely 
weather for tomorrow, based on all the information that has 
been made available to us.  

Each piece of evidence (weather forecast data) will give 
us a bba over Θ such that bbm’s are applied to the various 
sets within Θ. This will show where we think the truth is (the 
forecast for tomorrow). If this evidence is very certain then 
the singleton sets within Θ will get more mass, if we are 
uncertain then the set Ω will get more mass. Coincidently the 
set that shows complete ignorance is Ω. A completely naive 
state would apply all of the bbm to Ω. To fuse data we must 
combine these bba’s to create a new bba. There are a 
multitude of methods to accomplish this [xi]. The original 
work on the DST used Dempster’s (conjunctive) rule of 
combination shown in Equation 3 
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where k = m1(B)m2(C)
B∩C=∅
∑         

 
It can be seen that k is in fact a normalisation factor that 

redistributes any mass assigned to the empty set after 
combination. If we are to remove the normalisation we get 
Dempster’s un-normalised rule of combination as used in the 
TBM [vii] and shown in Equation 4. 
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For example, let us envisage that we have two weather 

forecasting experts that have given us two bba’s where 
Ω={snow,rain,wind). 

Use of Equation 4 on these bba’s will give the results 
shown in Table 1, where B is the horizontal grey and C is 
the vertical grey and the remaining cells show CB∩  and the 
mass of m1 × m2. The summation part of Equation 4 will add 
up the masses given in these cells that have the same set 
elements.  

Table 1 shows us that a lot of mass 21⊗m  is going to be 

assigned to the empty set. In fact 42% of the operations give 
rise to values being placed in the empty set.  

Figure 2 shows the proportion of the values, after 
combination, are given to the empty set. The instance of  3 
singletons, as with Table 1, gives a ratio of 0.42. This shows 
that 42% of all combination operations result in an empty 
set, this is also shown in Table 1. The hypothetical case of 0 
singletons would clearly give a dominance ratio of 0 as the 
empty set, ∅ , would be the only element in Θ. It should be 
noted that not every combination will apportion this amount 
to the empty set. Generally not all of the sets will have a 
belief assigned to them prior to combination, and also the 
beliefs are not even distributed across the sets. This means 
that two pieces of information could be combined with 
nothing going toward the empty set, if they are in complete 
agreement.  
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SET INTERSECTION AS USED IN DEMPSTERS RULE OF COMBINATION  
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Figure 2. Empty set dominance ratio after combination 

 
The point we are trying to raise is that using this type of 

combination rule can send a lot of the mass toward the 
empty set, as has been mentioned previously [xii] 

Other combination rules exist [xi] that are able to 
redistribute a proportion of the empty set, after each 
iteration, thus preventing convergence on the empty set. One 
of the best performing of these being PCR5 [viii], but 
possibly not the most efficient. 

If we are not combining in a recursive manner then this 

should not be an issue. Many applications require recursive 
fusion. Using the open world and Dempster’s conjunctive 
rule of combination together in a recursive nature can cause 
problems.  

We use a simple example to display some of the issues 
that can arise when dealing with iterative application of 
Dempster’s rule of combination. We are again looking at 
fusing weather forecast information over time. The forecast 
data places mass (beliefs) on two possible weather types thus 
Ω = {snow, rain}. 

 

IV. ITERATIVE FUSION  

A. Set Convergence 

We will iteratively and recursively fuse using m(snow) = 
0.9 and m(rain) = 0.1. This is signifying a simple fusion 
example where the input is very sure that snow is the correct 
forecast for tomorrow’s weather, and stays with this 
hypothesis over the time period. 

Figure 3 shows the result of using an open world approach 
and the conjunctive rule of combination. It can be seen that 
even though the incoming data is constant in its beliefs, the 
empty set still begins to dominate. This can be explained by 
the way the two pieces of information are combined as 
shown in Table 1. Any conflict or uncertainty, even if small 
as in this case, will accumulate over time and cause the 
empty set to converge rendering the system unresponsive 
[viii]. This clearly is not a good outcome. 

 

 
Figure 3. Empty Set dominance open world 

 

If we take the same input as for Figure 3 but use a closed 
world where the conjunctive rule of combination, and 
normalisation occur, then we achieve the results as shown in 
Figure 4.  



 

Figure 4. Normalised closed world 
 
When normalising we quickly converge to whichever set 

is getting more mass, or belief. Initially it may appear that 
this is an acceptable result, showing high certainty for the set 
with most belief. This may not be the case where we have 
uncertainty in our input. 

If we have incoming information that is uncertain as to the 
correct hypothesis such that m{snow} = 0.55 and m{rain} = 
0.45 then you expect the system to maintain a level of 
uncertainty. But it will in fact quickly converge to the set 
(from the incoming data) with the greatest mass, as shown in 
Figure 5. If you were to make decisions based on the 
weather forecast, and the system reports its forecast is  snow 
with 99% accuracy then the system would be giving you a 
false sense of security about the confidence of the overall 
weather type forecast. 

 

 
 

Figure 5. Normalised Closed world similar hypothesis 
 
 
 

B. Dynamic Ability 

Often with data fusion scenarios the sensing devices may 
change their outlook. This can occur as new information is 
received, viewpoints or resolutions change. Because of this 
it is important that a system remains dynamic, and flexible to 
changes in incoming information. Open and closed world 
approaches using the conjunctive rule of combination can 
quickly, and unnecessarily, converge. Once this convergence 
has taken place it is difficult to make the system recover. 

If for frames 1-25 we use m{snow} = 0.9 and m{rain} = 
0.1 and then for frames 26-100 we use m{snow} = 0.1 and 
m{rain} = 0.9 then we can simulate a very harsh change in 
the information that we are receiving from the sensors. 
Figure 6 shows that change with an open world and the 
conjunctive rule of combination. The change increases the 
conflict in the system and makes the convergence and 
dominance of the empty set more rapid. This small change in 
belief, and the ineffective manner that the TBM would deal 
with it, really highlights how ineffective this approach is for 
recursive and iterative procedures. 

 

 
Figure 6. Open world target type change 

 

Figure 7 shows how a closed world conjunctive 
combination reacts to the same inputs as used in Figure 6. 
Even though the change occurs at 25 frames it can be seen 
that it takes another 25 frames for the system to react. When 
you add some extra uncertainty and real world noise to the 
system then this delay would increase quite possibly to the 
extent that a change in outlook from the sensors is actually 
ignored. This is a very dangerous situation to be in when 
critical decisions need to be made.  

 



 

Figure 7. Closed world with changing beliefs 
 

C. Convergence Protection 

Previous work by the authors [iv] noted that convergence 
could be an issue in set based approaches. A simple measure 
to overcome this and provide convergence protection within 
the closed world was suggested. Figure 8 shows the results 
of applying the same data as used in Figure 7, but with 
convergence protection turned on as well. Convergence 
protection limits the amount of mass that can be assigned to 
any singleton set, after combination has taken place. Any 
mass that is in a singleton set and is over this limit is 
redistributed to the ignorant set Ω. This prevents the system 
from entering the state where it becomes unresponsive. You 
can then ‘fine tune’ the threshold of how dynamic the system 
needs to remain. 

The results in Figure 8 show how the system is now able 
to adjust and adapt quickly to new incoming information. 

 

 
Figure 8. Closed world changing beliefs with convergence protection 

 
 

D. Application to Random Data Set 

 
To highlight the issues further we will contrast with the 
simplistic data sets used in Section IV by testing on a 
randomly generated set of beliefs. This random set is shown 
in Figure 9 and will test both set convergence and the 
systems dynamic ability to cope with change. 
 

 
Figure 9. Random Input Beliefs 

 
Figure 10 Shows how inadequate the open world, as used in 
the TBM, is when we recursively fuse data. The conflict 
being presented by the random data set quickly ensures that 
the empty set dominates. 
 

Figure 10. Open World Combination 
 
Figure 11 and 12 show the effects of the convergence 
protection. Figure 11 shows that even when strong 
information is received, that is contrary to the current belief, 
the system can be slow to respond, to the extent that 
information is practically ignored. Figure 12 shows that with 
convergence protection the system can remain dynamic and 
respond well to input data. 



 

     Figure 11. Closed World Combination 
 

Figure 12. Closed World Combination and Convergence Protection 

 

V. CONCLUSION 

 
We have shown how iterative processes can present 
problematic results when we use set based fusion techniques. 
Initially it can seem as if the system is working well and 
providing a solid classification. Unfortunately this is often 
untrue and easily overlooked.  

It can be seen that retarding the mass assigned to singleton 
sets and adding some uncertainty back into the system can 
aid in the process, making it much more flexible and 
dynamic to new information. But this in itself also causes 
problems as it can eradicate any ‘memory’ that the system 
has. If we have been receiving information regarding a 
certain event for some time then surely we should have some 
memory of this, thus making any new abrupt change to be 
viewed as noise. Effectively the system should know when 
to accept change and when to reject it. This is an avenue of 
further research for the authors. 

Set based fusion and classification systems need to have a 
more inherent flexibility and intelligent approach to how 

they combine information and make classifications based on 
that. The authors feel that far too often DST approaches are 
used due to their simplicity, but are applied poorly, without 
an adequate understanding of the modeling required, nor of 
the interpretation of the results. 
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