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Abstract — Risk analyses are often specific studies in various 

sectors (technical, human, organizational, environmental). 
However, facing the increasingly complex character of current 
industrial systems, it is important to deal with all sectors in a 
same risk model. This has led to develop a model that enables 
so-called "integrated" analyses to be performed. The studies 
carried out have demonstrated the difficulty in configuring 
these components accurately and/or completely. This 
observation leads us to ask questions related on how taking into 
account these uncertainties, modeling them and propagating 
them in this integrated model. The purpose of this paper is to 
apply elements of evidence theory to an industrial case in order 
to draw perspectives and to identify axes of future research. 
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I. INTRODUCTION 

A. General context 

At the present time, industrial systems are becoming more 
and more complex due to their increasing number of 
components and their interactions (example of 
instrumentation and control connecting components and 
software) and due to the recognition of employees and 
organizations interacting with technical systems. This is why 
the Integrated Risks Analysis (IRA) methodology has been 
developed by EDF in partnership with CRAN and INERIS 
for the analysis of so-called complex socio-technical systems 
[1] which comprise technical, environmental, human and 
organizational components. It is important to deal with all of 
these components in order to take their interactions into 
account in particular those of the various risks resulting from 
these components. 

For instance, maintenance or operating actions are  applied 
to a technical system but they are carried out by a team. Such 
operations are submitted to organization, regulatory 
conditions and physical environment context which influence 
both the system performance and the involved employees. 

B. Orientation 

The main goal of this IRA method is to be able to 
prioritize these different types of risks in order to better 
orientate reduction systems (called barriers) and to assist 
decision-making.  

The estimation of these different risks is a critical phase in 
this risk analysis process. Indeed, it combines estimations 
which may be very precise and well quantified for technical 
(reliability of components) and environmental (statistics on 
hazards) risks, with qualitative estimations for the human and 
organizational aspects. Therefore several levels and types of 
uncertainties must be propagated in the model. Indeed, the 
considered industrial systems involving these different kinds 
of uncertainties cover many issues (safety, environment, 
economic, political, etc.) and different types of risks.  

The Integrated Risk Analysis model developed in [1] is 
based on a representation of the risks model under the 
Bayesian networks (BN) framework in order to deal with 
data issued from the experimental feedback and data 
provided by experts’ judgment and inter-connected 
variables. Consequently, the developments concerning the 
consideration of uncertainties should extend and support this 
formalism. For these reasons, in order to characterize the 
uncertainties associated with several types of estimations and 
to find a relevant model propagating them in the same 
representation, we investigate Evidential Networks (EN) 
model as proposed in [2] that appears as a solution to take 
into account different types of uncertainties and to integrate 
them in the Bayesian risks models based on the previous 
industrial studies.  

This paper aims at implementing the evidence theory on 
elementary patterns developed for IRA using BN. The 
final objective is the uncertainty treatment in the complex 
social and technical systems of industrial interest (many 
hundreds of inter-connected variables).  

For this purpose, section II is dedicated to presenting the 
IRA method and a brief introduction of the industrial case. 
The needs for handling every kind of uncertainties are 
pointed out. section III concerns the modeling goals based on 
evidential networks to handle uncertainties. In the last 
sections, the most important elementary pattern of IRA 
models is tested and conclusions are provided.  

II. INTEGRATED RISK ANALYSIS METHOD 

A. Principle of Integrated Risk Analysis (IRA) 

This method aims to take into account the complexity and 
interdisciplinarity of technical systems that are subject to 



 

maintenance and operating actions (carried out by employees 
involving in their organization) and the regulatory and 
physical environmental contexts. This method includes many 
goals and they must guarantee the various issues like safety, 
availability and maintaining the system during its lifetime.  

The main challenges of this approach are to develop 
methods and tools for analyzing risks for systems subjected 
to correlated hazards and having correlated influences on the 
above defined issues. This is done in the aim of prioritizing 
different types of risks, helping the choice of barriers to 
reduce these risks and to contribute to their better control. It 
also contributes to the risk communication and to the choice 
of reduction or mitigation prevention barriers. 

B. Conceptual framework of an integrated approach 

The Integrated Risk Analysis process is based on a 
conceptual framework (Figure 1) enabling the various 
previously mentioned components to be taken into account 
and their interactions to be modeled [5]. 

 

 
Figure 1. Conceptual framework. 

 

Within this conceptual scheme, resulting from the Paté-
Cornell and Murphy representation [3], the model covers 
three levels: technical, human and organizational, connected 
together by influence relationships related to the 
environmental and organizational contexts. The different 
levels of this model are characterised as follows. 
1. Technical level: the system is represented by a bow tie [4], 
comprising a fault tree and an event tree, enabling the 
simulation of various scenarios that may arise (risk reduction 
and mitigation barriers are taken into account at this level) 
2. Human level: it represents human actions (for example, 
maintenance or operating action). The behavior of the 
working team is therefore modeled using different indicators 
which enable the effectiveness of these actions to be assessed 
(for example: training, delegation, experience, etc.). 
3. Organizational level: it represents the organization 
governing the above mentioned human actions using different 
indicators (called POFs for pathogenic organizational 
factors). This involves characterizing the different pathogenic 
elements affecting the technical system, here via human 
actions (for example: weakness shortcomings in the 
organization culture of safety, failure in daily safety 
management, production pressures, etc.) [5] and [6]. 

These different human indicators and POFs are distributed 
according to three phases characterising a human action: 
preparation, execution and closure. Various interactions 
among indicators and POFs are described in [1]. 

C. Modeling IRA type studies 

Last step of an IRA involves representing models in order 
to carry out simulations and diagnoses. Due to the works led 
since several years by Leger et al [1] to model complex 
socio-technical systems, the available model is a BN. 

This modeling formalism is justified by the ability of BN 
to represent multiple-attributes correlated variables, to 
combine data from expert’s judgements and feedback. It also 
performs quick simulations or diagnoses. Thus the BN model 
is well adapted to the representation of complex technical 
systems. Nevertheless, the consideration of human and 
organizational factors raises the problem due to the 
uncertainty and imprecision in our studies. Therefore, the 
objective is not to lead a new modeling but to extend those 
existing and to enrich them by integrating it the handling of 
epistemic uncertainty. 

III.  MODELLING BY EVIDENTIAL  NETWORKS 

A. Notion of uncertainty 

In our IRA models, two types of uncertainties are 
distinguished, which are: 

- aleatory uncertainty: caused by the natural variability 
of a physical phenomenon (for example, behavior 
during failure differs from one component to another 
in the same series), 

- epistemic uncertainty: caused by the imprecise or 
incomplete character of the information  (for example, 
specific failure modes for a component are unknown). 

B. Goals to be targeted 

Risk studies are often tainted with these two types of 
uncertainty. In the technical field, it is possible to have access 
to data that enable probability distributions to be constructed. 
However, the characterization of human actions and their 
organizational context within this integrated vision of risks 
implies to study alternatives representation of uncertainty. 
The classic probability framework does not allow taking 
into account epistemic uncertainty. It is thus necessary to 
switch to another uncertainty modeling method (ensuring the 
previously defined industrial goals).  

Indeed, the construction of probability distributions would 
involve having access to information that would be 
impossible to obtain for human and organizational factors. 
For these reasons, the analyst develops a quantification based 
on verbatim in which the interviewed participants described 
the action, its complexity, the level of training of participants, 
their experience, and the aids used, etc. It is therefore 
possible to define the minimum and maximum bounds of 
the risks associated to the considered action.  

Indeed, as interval valued probabilities cannot be easily 
considered in BN, a different model was chosen, EN. They 



 

consist in a graphical representation of knowledge like BN 
but integrate belief notions. Ben Yaghlane and Mellouli [7] 
propose EN based on Dempster combination rules (DCR) 
and the generalized Bayesian theorem (GBT) [8] whereas 
Simon and Weber propose EN based on Dempster-Shafer 
structures and Bayesian inference extended to belief masses. 
They propose a formalism applied to performance, reliability 
and utility analyses that characterizes uncertainty with 
minimum and maximum values by considering DS structures 
and which allows to deal with a lot of variables. 

The theory of belief functions is one solution for the 
treatment of uncertainties. Indeed, we can quote other 
methods such as: imprecise probabilities [9], possibility 
theory [10], upper and lower probabilities [11], fuzzy sets 
[12], etc. Nevertheless, EN is very interesting in our 
application, because this modeling method is very close to 
the BN modeling method. EN allows using the structure of 
the BN model used in the IRA studies and extends it to model 
the epistemic uncertainty. In the following, we study the 
usefulness and feasibility of EN modeling method for 
Integrated Risk Analysis (IRA) of a real industrial case.  

C. Evidence theory 

The evidence theory was developed by Dempster during his 
work on upper and lower probability bounds in 1967 [13] and 
then completed by Shafer with a more complete mathematical 
formalism in 1976 [14]. Generally seen as a generalization of 
the probability theory, it may be based on a modeling using 
probability intervals, and corresponds to a relaxation of the 
basic axioms of probabilistic theory. Consequently, new 
notions were defined to characterize the study of variables 
involved in risk models based on the theory of belief 
functions. For our studies, we use the following notations: 

- State hypothesis i for variable X:    X
iH   

- Focal set associated with variable X:  X
jA   

- Belief mass of X
jA :         )( X

jAm   

- Belief of X
jA :           )( X

jABel  

- Plausibility of X
jA :         )( X

jAPls  

D. From Bayesian networks to evidential networks 

 
Figure 2. Example of IRA Bayesian elementary pattern. 

 

Systems studies through the IRA method are often 
complex, i.e. with an important number of variables and 
dependence links between them. Figure 2 shows an 
elementary pattern of the IRA model (due to the 
confidentiality restrictions, the global model can not be 

presented in this paper) which is repeated several tens of time 
in risks model. Representing these systems to study them 
requires the use of a tool allowing modeling that; BN is a 
solution to build this model as presented in [1].  

The use of combination between evidence theory and BN 
as a support for the propagation of uncertainties in the IRA 
model is explained, on the one hand, by the use of BN to IRA 
models and, on the other hand, by the necessity of using the 
concepts of evidence theory to a industrial large scale. 
Moreover, this theory allows taking epistemic uncertainty 
into account in the BN used for the IRA. 

Tools developed at present such as IPP Toolbox (by EDF 
R&D and University of Duisburg-Essen [15]), TBMLAB (by 
Smets [16]) or EN [8], although effective, do not allow, at 
present, to be used on large-size industrial systems cases 
(with generally several hundreds of nodes connected between 
them by many dependence relations) as we can meet them in 
risks analysis in nuclear or transport domains for example. It 
is thus necessary to investigate another way of modeling 
allowing to take into account uncertainties in IRA studies. 

EN as proposed by Simon and Weber [2] allows 
implementing the evidence theory to the industrial world by 
leaning on its bases and  combining them with the properties 
of the Bayesian inference. They are similar to BN and allow a 
modeling of the dependences and the expression of relations 
between the various variables of the study on a common 
structure based on graphs. The difference between these two 
models is marked at the level of semantic (modalities and 
probabilities in BN and focal sets and masses in EN). The 
inference based on junction tree [17] can be used in EN as 
proposed in [2]. In the next section, we test them on the 
elementary pattern found in IRA models.  

IV. IMPLEMENTATION IN A RISK MODEL 

A. Industrial context and characterization of uncertainty 

In IRA studies (generally applied to nuclear systems or 
high safety systems) the objective is to determine variables 
issues with the most possible precision that represent the 
studied installations (safety, availability and maintenance of 
the system during its lifetime). Due to the criticality of these 
installations, the results have to be the more close possible of 
the reality to guarantee accurate risks estimation and allowing 
the best decision-making. Two concepts related to IRA 
(section II.B.) are likely to cause uncertainty in the studies: 

- Influencing factors: they characterize the influence 
that a variable of the network will have on its 
downstream variable. For example, the state of a 
human indicator characterizing the preparation of 
maintenance action influences its effectiveness. 

- Prior distributions: they are defined on the basis of 
experimental feedbacks or even on expert opinions. 
They characterize the prior state of the variable. For 
example, the presence/degradation of an initial 
condition. 

Concerning influencing factors (denoted α), they are 



 

assigned to the relationship between two nodes based on an 
expert elicitation grid (Figure 3) according to the impact of 
the upstream variable on its downstream variable. The value 
represents the lower limit of α. For instance, in the case of a 
little impact α = 0.7 and if there is no impact α = 0.9. It is 
difficult, for the expert, to decide between two consecutive 
values of α in the elicitation grid. Moreover the value in 
Figure 3 represents an interval as defined in the Figure 4.  

Here appears the importance of the Dempster-Shafer 
theory, which helps to take into account this uncertainty and 
enables the influencing factor to be defined by means of 
intervals. 

 
 Parameters αααα  Parameters αααα 
 No impact 0.9  No impact [0.9 ;1] 

 Little impact 0.7  Little impact [0.7 ; 0.9[ 

 Impact 0.5               Impact [0.5 ; 0.7[ 

 High impact 0.3  High impact [0.3 ; 0.5[ 

 Total impact 0.1  Total impact [0.1 ; 0.3[ 

  Figure 3. Elicitation grid of      Figure 4. Elicitation grid for 
    the influencing factor  α.         the factor α using intervals. 

 

The prior distribution is based on the observations made 
on already studied test-cases (Table I). However in some 
cases, the modality of the variable is not perfectly known (for 
instance if a component is out of order its failure state is 
unknown before diagnosis or if an indicator is not observed 
every modalities are possible). The uncertainty can be taken 
into account as proposed in Table II. These tables given for 
illustration are those used for defining indicators in the 
following simulations. 

Table I.  
PRIOR DISTRIBUTION WITHOUT IMPRECISION 

Indicator 
{present} {degraded} 

0.65 0.35 

Table II. 
PRIOR DISTRIBUTION WITH IMPRECISION 

Indicator 
{present} {degraded} {present,degraded} 

0.6 0.3 0.1 

Table III. 
TABLE DEFINING THE BEL(EFFECTIVE) NODE 

Preparation 
Bel(effective) 

Believe Doubt 
{effective} 1 0 

{ineffective} 0 1 
{effective,ineffective} 0 1 

Table IV. 
TABLE DEFINING THE PLS(EFFECTIVE) NODE 

Preparation 
Pls(effective) 

Plausibility Disbelief 
{effective} 1 0 

{ineffective} 0 1 
{effective,ineffective} 1 0 

These two configurations of uncertainty (on the influencing 
factors and on the prior distributions) are studied in a test 
case initially represented using BN. The BN is transformed to 
an EN to take into account the various uncertainties. Thus we 
use focal sets and masses propagation in the EN model used 
for IRA study. 

B. Uncertainty propagation test case 

To study the propagation of epistemic uncertainty within 
an EN, the simple case of V-structure is used allowing the 
study of various sources of uncertainty. In this test case, we 
use a recurrent elementary structure of the global IRA 
networks. It allows understanding easily the modeling 
method. Then, this reasoning can be applied to the whole 
model. 

The model consists of two nodes characterizing two human 
indicators describing a phase for preparing maintenance or 
operating action, itself described by the variable Preparation. 
Two other nodes are added to these three nodes enabling the 
computation [2] of belief and plausibility measure of the 
effectiveness of the preparation phase to be characterized 
(Figure 5).  

For each of the human indicators, two states are defined: 
{ present} if the indicator complies fully with the previously 
defined criteria for characterizing it, {degraded} if the 
indicator does not comply with one or more of the criteria 
defining it. The impact of the human indicator will be more 
or less high according to the sensitivity of the variable 
Preparation to the human Indicators 1 and Indicators 2.  

A quantification method [3] is used in order to compute 
the influence of the indicators on the Preparation phase. 
Influencing factors iα  are used to define the relation between 

the Indicator i and the Preparation phase. When several 
indicators are in state {degraded} the influence is given by 
the product of iα  of these indicators.  

 
 
 

Figure 5. Model used for the tests. 
This model is used for various uncertainty inclusion 

configurations: no uncertainty on the model and data (case 1), 
uncertainty on the influencing factors linking the human 
indicators and the phase preparation that they describe (case 
2), uncertainty on the state of the human indicators (case 3), 
uncertainties on the influencing factors and the state of the 
human indicators (case 4). 

For each simulation, nodes are defined describing the 
presence or degradation of human indicators with the same 
distributions (Tables I and II) and this in order to compare 
the various inferences on the network. The conditional 
masses table (CMT) associated with preparation node 
depends on the studied case. These CMTs (equivalent of 
conditional probabilities tables in BN) enable the 
distribution of the masses to be characterized according to the 

Indicator1  Indicator2 

Preparation Bel(effective) Pls(effective) 



 

various focal sets defined in the study. The nodes dedicated 
to compute the belief and plausibility of preparation phase 
effectiveness are described using tables (Tables III and IV). 
Case 1: no uncertainty on the model and data. 

This case is the commonly used configuration and is a 
Bayesian case. The CMT related to the Preparation node 
(Table V) is therefore fairly easy to complete.  

Table V. 
CMT LINKED TO CASE 1 

indicator1 indicator2 
Preparation 

{effective} {ineffective} {effective,ineffective} 

{present} 
{present} 1 0 0 

{degraded} 0.7 0.3 0 

{degraded} 
{present} 0.5 0.5 0 

{degraded} 0.35 0.65 0 

Table VI.  
CMT LINKED TO CASE2 

indicator1 indicator2 
Preparation 

{effective} {ineffective} {effective,ineffective} 

{present} 
{present} 1 0 0 

{degraded} 0.7 0.1 0.2 

{degraded} 
{present} 0.5 0.3 0.2 

{degraded} 0.35 0.37 0.28 

If both human indicators are present then there will be no 
impact on the effectiveness of the preparation of the action 
(the influencing factors α are therefore equal to 1) leading to 
100% of effectiveness. If one or both indicators are degraded, 
it will reduce the effectiveness of the preparation.  

As there is no epistemic uncertainty in this model, the prior 
distribution of {effective,ineffective} modality only comprises 
zero values. 
Case 2: uncertainty on the influencing factors linking the 
human indicators and the phase of preparation. 

This case only deals with influencing factors which are 
included in intervals. As both factors here are initially set at 
0.5 and 0.7, intervals [0.5; 0.7] and [0.7; 0.9] are retained.  

Changes in the previous case will occur when one or even 
both indicators are degraded. Indeed, the factors α rely within 
the intervals. Consequently, if Indicator 2 is degraded (its 
factor is included in the interval [0.7; 0.9]) we end up at 
worst with effectiveness reduced to 0.7 and ineffectiveness at 
0.3 (α=0.7) and at best effectiveness at 0.9 and 
ineffectiveness at 0.1 (α=0.9). Thus, the 0.2 enabling passage 
from 0.7 to 0.9 of efficiency is situated in 
{effective,ineffective} modality, characterizing uncertainty. If 
both indicators are degraded, the sum of both influencing 
factors is calculated on the intervals. Therefore, in this 
second case, we will have Table VI. 
Case 3: uncertainty on the state (present or degraded) of the 
indicator upstream of the phase that it describes (Table VII).  
Case 4: uncertainties on the influencing factors and on the 
state of the indicators give the next table. 

Table VII.  
CMT LINKED TO CASE 3 

indicator1 indicator2 
Preparation 

{effective} {ineffective} {effective,ineffective} 

{present} 
{present} 1 0 0 

{degraded} 0.7 0.3 0 
{present,degraded} 0.7 0 0.3 

{degraded} 
{present} 0.5 0.5 0 

{degraded} 0.35 0.65 0 
{present,degraded} 0.35 0.5 0.15 

{present,degraded} 
{present} 0.5 0 0.5 

{degraded} 0.35 0.3 0.35 
{present,degraded} 0.35 0 0.65 

Table VIII. 
CMT LINKED TO CASE 4 

indicator1 indicator2 
Preparation 

{effective} {ineffective} {effective,ineffecti
ve} 

{present} 
{present} 1 0 0 

{degraded} 0.7 0.1 0.2 
{present,degraded} 0.7 0 0.3 

{degraded} 
{present} 0.5 0.3 0.2 

{degraded} 0.35 0.37 0.28 
{present,degraded} 0.35 0.3 0.35 

{present,degraded} 
{present} 0.5 0 0.5 

{degraded} 0.35 0.3 0.35 
{present,degraded} 0.35 0 0.65 

V. RESULTS ANALYSIS 

A. Inference and first results 

Once these different cases have been defined and modeled, 
simulations are carried out and provide with the following 
results presented in a summarized way. Various inferences on 
each of the four cases have been carried out under the 
previously defined conditions (i.e. a distribution with or 
without uncertainty and with defined CMT).  

For case 1, the probability of effectiveness is 0.74. The 
results on Bel and Pls bounds can be explained because no 
uncertainty (neither variability nor epistemic) has been 
considered on the indicators and the influencing factors. Here 
the obtained probabilities are only considered as references 
for the following cases which deal with uncertainties. All of 
the results are gathered in Table IX and Figure 6. 

 
Figure 6. Intervals of effectiveness probability for the action 

related to each case. 
 

Table IX.  
VALUES OF THE BEL AND PLS BOUNDS OF CASE STUDIED  

 Bel(effective) Pls(effective) 
Case 1 (no uncertainty) 0.7384 0.7384 
Case 2 (uncertainty on αααα) 0.7384 0.8637 
Case 3 (uncertainty on the indicators) 0.704 0.7735 
Case 4 (uncertainty on αααα and the indicators) 0.704 0.8787 

B. Contribution of uncertainties 

Apart from its ability to propagate the uncertainty through 
the risk model, this exercise put forward its ability to 
prioritize the contributions of uncertainties on the model 
inputs to the results. Indeed, in the test case without 
uncertainty, the probability of effectiveness of the 
maintenance action is 0.74 

For example, considering this value as the reference used 
for comparing the results including uncertainty, taking into 



 

account uncertainties on the influencing factors and the prior 
distributions on human indicators leads to a 0.17 range 
around this reference value with a spectrum centered above 
this value.  

But the largest uncertainty affecting the effectiveness of 
the preparation phase is related to the uncertainty on the 
influencing factors α (smaller than the uncertainty on the 
prior distribution of indicators). This leads to give more 
emphasis to the influencing factor estimation phase than to 
the study of the presence/degradation of indicators. 

However, the size of these intervals [Bel, Pls] mainly 
depends on the initially degree of uncertainty in these two 
configurations, i.e. on the influencing factors or on the prior 
distributions. Indeed, if the uncertainty on the indicators is 
higher, this would result in greater imprecision of the results. 

As far the uncertainty on the influencing factors is 
concerned, it will always be approximately 0.2 (due to choice 
of the elicitation grid which makes it impossible to multiply 
the number of levels) whereas the presence/degradation of an 
indicator will always be more easily elicited by an expert and 
therefore it will be easier to reduce the related uncertainty 
(for example, by having better or broader experimental 
feedback). 

Estimating influencing factors for this risk model will 
always be the most critical step of this risk assessment phase. 

VI. CONCLUSION 

A. Characterization of uncertainties in IRA thanks to the 
evidence theory 

This implementation has demonstrated the feasibility of 
characterizing the variability and epistemic uncertainty and 
its propagation through large-scale EN (hundreds of nodes). 
These first results highlight the role that uncertainties play in 
the basic blocks of integrated risk models and consequently 
the need to take them into account in global models in order 
to increase the representativeness of our results and therefore 
to support a better decision-making. The lower value 
obtained for the effectiveness of the action when taking into 
account the uncertainty compared to the one obtained for the 
case without uncertainty indicates that the result with no 
uncertainty was optimistic. However, IRAs generally need to 
be conservative in order to ensure safety criteria. 

Through this paper are able to put into practice the notion 
of the evidence theory on a real industrial complex case to 
model the uncertainties met during an IRA, in particular with 
the integration of human and organizational factors in risk 
analyses which are more often direct around the technical 
system. This modeling of uncertainties was possible due to a 
transformation of a large BN (used for IRA models) to a 
large EN by adapting semantics used for BN to that defined 
in the evidence theory and by using existing inference 
methods (junction trees). Moreover, these works were able to 
be realized on the basis of existing BN which models our 
system to take both aleatory and epistemic uncertainties into 
account in the same model.  

This transition allows us the propagation of uncertainty at a 
lower cost as leaning on models and tools of treatment which 
already exist and because the stage of allocating a 
distribution function followed by one of random ranging 
(which moreover do not guarantee that ranging will be 
carried out all over the whole distribution including its tail 
when the number of calculations is not high enough) are not 
carried out. 

B. Perspectives 

Applied here to an elementary motive of a characteristic 
network of an IRA to study feasibility of the propagation of 
uncertainties in this type of analysis, it is henceforth 
necessary to develop these works on the whole network to 
study feasibility in a “large scale”. 

It is also advisable to study the sensibility of the values in 
the table defining the influence factors, on one hand to assure 
the robustness of the works and on the other hand to refine 
this table and the associated intervals (intervals which are 
used in particular to the risks assessment by experts 
opinions). 
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