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Abstract — Risk analyses are often specific studies in various
sectors (technical, human, organizational, environental).
However, facing the increasingly complex characteof current
industrial systems, it is important to deal with al sectors in a
same risk model. This has led to develop a modelahenables
so-called "integrated" analyses to be performed. Ta studies
carried out have demonstrated the difficulty in cofiguring
these components accurately and/or completely. This
observation leads us to ask questions related onwwdaking into
account these uncertainties, modeling them and pregating
them in this integrated model. The purpose of thipaper is to
apply elements of evidence theory to an industriatase in order
to draw perspectives and to identify axes of futureesearch.
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I. INTRODUCTION

A. General context
At the present time, industrial systems are becgmiore

The estimation of these different risks is a caitiphase in
this risk analysis process. Indeed, it combinesmasions
which may be very precise and well quantified fechnical
(reliability of components) and environmental (stids on
hazards) risks, with qualitative estimations fag ttuman and
organizational aspects. Therefore several levalstgpes of
uncertainties must be propagated in the model.dddée
considered industrial systems involving these dkffe kinds
of uncertainties cover many issues (safety, enwiwmt,
economic, political, etc.) and different types igks.

The Integrated Risk Analysis model developed inifl]
based on aepresentation of the risks model under the
Bayesian networks (BN) framework in order to deal \ith
data issued from the experimental feedback and data
provided by experts’ judgment and inter-connected
variables. Consequently, the developments concerning the
consideration of uncertainties should extend ambstt this
formalism. For these reasons, in order to charzetethe
uncertainties associated with several types ofmadibns and

and more complex due to their increasing number @ find a relevant model propagating them in thenea
components and their interactions (example aofepresentation, we investigate Evidential NetwolEN)

instrumentation and control connecting componems amodel as proposed in [2] that appears as a soltitidake
software) and due to the recognition of employeed ainto account different types of uncertainties andntegrate

organizations interacting with technical systemisisTis why
the Integrated Risks Analysis (IRA) methodology meen

developed by EDF in partnership with CRAN and INEBRI

for the analysis of so-called complex socio-tecahgystems
[1] which comprise technical, environmental, humand

organizational components. It is important to deith all of

these components in order to take their interastiomo

account in particular those of the various rislsuling from

these components.

For instance, maintenance or operating actionsapied
to a technical system but they are carried out teaen. Such
operations are submitted to organization,
conditions and physical environment context whitfuence
both the system performance and the involved eneglay

B. Orientation

them in the Bayesian risks models based on theiquev
industrial studies.

This papemims at implementing the evidence theory on
elementary patterns developed for IRA using BN. The
final objective is the uncertainty treatment in thecomplex
social and technical systems of industrial interesmany
hundreds of inter-connected variables)

For this purpose, section Il is dedicated to presgrthe
IRA method and a brief introduction of the indusitrcase.
The needs for handling every kind of uncertaintee
pointed out. section Ill concerns the modeling gdelsed on

regwatofevidential networks to handle uncertainties. In thast

sections, the most important elementary patterniRA
models is tested and conclusions are provided.

[I. INTEGRATEDRISKANALYSIS METHOD

The main goal of this IRA method is to be able to

prioritize these different types of risks in ordir better
orientate reduction systems (callédrriers) and to assist
decision-making.

A. Principle of Integrated Risk Analysis (IRA)

This method aims to take into account the compJeitd
interdisciplinarity of technical systems that angbject to



maintenance and operating actions (carried outniyl@yees These different human indicators and POFs areilaliséd
involving in their organization) and the regulatoand according to three phases characterising a huméaonac
physical environmental contexts. This method inekichany preparation, execution and closure. Various intevas
goals and they must guarantee the various isskesdifety, among indicators and POFs are described in [1].
availability and maintaining the system duringlifistime. C.Modeling IRA type studies

The main challenges of this approach are to develop
methods and tools for analyzing risks for systeotgested
to correlated hazards and having correlated infleasron the
above defined issues. This is done in the aim mirigizing
different types of risks, helping the choice of rfEs to
reduce these risks and to contribute to their betatrol. It
also contributes to the risk communication andhi ¢hoice
of reduction or mitigation prevention barriers.

Last step of an IRA involves representing modelsriher
to carry out simulations and diagnoses. Due toatbiks led
since several years by Legetr al [1] to model complex
socio-technical systems, the available model itNa B
This modeling formalism is justified by the abilibf BN
to represent multiple-attributes correlated vagabl to
combine data from expert’s judgements and feeddaektso
performs quick simulations or diagnoses. Thus thNenibdel
B. Conceptual framework of an integrated approach is well adapted to the representation of complehreal
The Integrated Risk Analysis process is based on systems. Nevertheless, the consideration of humad a
Conceptua| framework (Figure 1) enab“ng the Vaiouorganizational factors raises the problem due te th
previously mentioned components to be taken intmoaet Uncertainty and imprecision in our studies. Thenefahe

and their interactions to be modeled [5]. objective is not to lead a new modeling but to edt¢hose
existing and to enrich them by integrating it ttentlling of
Ongnisafional contet Greensatenal v @pjistemic uncertainty.
Organisational Organisational
Org | factora factor b

3 Ill. MODELLING BY EVIDENTIAL NETWORKS

Actions layer

Organisational
factorb | Actiona

A. Notion of uncertainty

In our IRA models, two types of uncertainties are
distinguished, which are:

- aleatory uncertainty: caused by the natural variability
of a physical phenomenon (for example, behavior
during failure differs from one component to anothe
in the same series),

- epistemic uncertainty: caused by the imprecise or

e Horaol BT incomplete character of the information (for exdéenp
Figure 1. Conceptual framework. specific failure modes for a component are unknown)

Natural environment context i g Technical layer
1 [

Environmental Caption

factora

I Safety barrier

= Transactional exchange

Environmental

: Vertical exchange
factorb

Within this conceptual scheme, resulting from thetéP B. Goalsto betargeted
Cornell and Murphy representation [3], the modelers Risk studies are often tainted with these two typés
three levels: technical, human and organizatiooahnected uncertainty. In the technical field, it is possibdehave access
together by influence relationships related to théo data that enable probability distributions toco@structed.
environmental and organizational contexts. Theedifit However, the characterization of human actions treir
levels of this model are characterised as follows. organizational context within this integrated visiof risks
1. Technical levelthe system is represented by a bow tie [4]mplies to study alternatives representation of eutzinty.
comprising a fault tree and an event tree, enabtimg The classic probability framework does not allow t&ing
simulation of various scenarios that may arisek (résluction into account epistemic uncertainty.lt is thus necessary to
and mitigation barriers are taken into accounhigtlevel) switch to another uncertainty modeling method (ensguthe
2. Human levelit represents human actions (for examplepreviously defined industrial goals).
maintenance or operating action). The behavior l# t |ndeed, the construction of probability distributsowould
working team is therefore modeled using differeicators  jnyolve having access to information that would be
which enable the effectiveness of these actionmetassessed impossible to obtain for human and organizatiomaitdrs.

(for example: training, delegation, experience,)etc For these reasons, the analyst develops a quatitifichased

3. Organlfhatlorgal IeveI:tl.t redpLesents tthe organlf;\#onon verbatim in which the interviewed participantscribed
governing the above mentioned human actions usffeg the action, its complexity, the level of traininfparticipants,

indicators (called POFs for pathogenic organizational . . . .
factors). This involves characterizing the different pagboic their experience, and the aids used, etc. It isetbe

elements affecting the technical system, here vienan possible to define theninimum and maximum bounds of

actions (for example: weakness shortcomings in tHB€ risksassociated to the considered action. ,
organization culture of safety, failure in daily fesy Indeed, as interval valued probabilities cannotebsily




consist in a graphical representation of knowlelige BN
but integrate belief notions. Ben Yaghlane and Mdil[7]

presented in this paper) which is repeated setemalof time
in risks model. Representing these systems to sthegn

propose EN based on Dempster combination rules {DCRequires the use of a tool allowing modeling tHaly is a

and the generalized Bayesian theorem (GBT) [8] adwr

solution to build this model as presented in [1].

Simon and Weber propose EN based on Dempster-Shafeifhe use of combination between evidence theoryBixd

structures and Bayesian inference extended toflmahbsses.
They propose a formalism applied to performandébiity
and utility analyses that characterizes uncertainiyh
minimum and maximum values by considering DS stmast
and which allows to deal with a lot of variables.

The theory of belief functions is one solution ftre
treatment of uncertainties. Indeed, we can quoteerot
methods such as: imprecise probabilities [9], ki
theory [10], upper and lower probabilities [11]zfy sets
[12], etc. Nevertheless, EN is very interesting our
application, because this modeling method is vdogecto
the BN modeling method. EN allows using the strretaf
the BN model used in the IRA studies and extentisritodel
the epistemic uncertainty. In the following, we dstuthe

as a support for the propagation of uncertaintiethé IRA
model is explained, on the one hand, by the ug&N\otfo IRA
models and, on the other hand, by the necessitisiafy the
concepts of evidence theory to a industrial largales
Moreover, this theory allows taking epistemic umaieity
into account in the BN used for the IRA.

Tools developed at present such as IPP ToolboxeDly
R&D and University of Duisburg-Essen [15]), TBMLA@®Y
Smets [16]) or EN [8], although effective, do ndibw, at
present, to be used on large-size industrial systeases
(with generally several hundreds of nodes conneottaleen
them by many dependence relations) as we can imeet in
risks analysis in nuclear or transport domainsefaample. It
is thus necessary to investigate another way of efirggl

usefulness and feasibility of EN modeling method foallowing to take into account uncertainties in IRtAdies.

Integrated Risk Analysis (IRA) of a real industrialse.

C. Evidencetheory

The evidence theory was developed by Dempster glunis
work on upper and lower probability bounds in 19$863] and
then completed by Shafer with a more complete nnadiieal
formalism in 1976 [14]. Generally seen as a gerstbn of
the probability theory, it may be based on a magelising
probability intervals, and corresponds to a relaxabf the
basic axioms of probabilistic theory. Consequentigw
notions were defined to characterize the study afables
involved in risk models based on the theory of dfeli
functions. For our studies, we use the followingations:

- State hypothesisfor variableX: HX

- Focal set associated with variable ij

- Belief mass of A" : m(A)

- Belief of A": Bel (A])
- Plausibility of A’ : PIS(AY)

From Bayesian networks to evidential networks
.

.
N

EN as proposed by Simon and Weber [2] allows
implementing the evidence theory to the industnalld by
leaning on its bases and combining them with tlopgrties
of the Bayesian inference. They are similar to Bid allow a
modeling of the dependences and the expressioalatfans
between the various variables of the study on anoom
structure based on graphs. The difference betwessettwo
models is marked at the level sémantic (modalities and
probabilities in BN and focal sets and masses ir). H\e
inference based on junction tree [17] can be used in EN as
proposed in [2]. In the next section, we test themthe
elementary pattern found in IRA models.

IV. IMPLEMENTATION IN A RISK MODEL

A. Industrial context and characterization of uncertainty

In IRA studies (generally applied to nuclear systeon
high safety systems) the objective is to deternviagables
issues with the most possible precision that remteshe
studied installations (safety, availability and ntanance of
the system during its lifetime). Due to the criliaof these
installations, the results have to be the moreecfmsssible of
the reality to guarantee accurate risks estimatimhallowing
the best decision-making. Two concepts related Ré |
(section 11.B.) are likely to cause uncertaintythie studies:

- Influencing factors. they characterize the influence

J J that a variable of the network will have on its
downstream variable. For example, the state of a

human indicator characterizing the preparation of

maintenance action influences its effectiveness.

Prior distributions. they are defined on the basis of

experimental feedbacks or even on expert opinions.

They characterize the prior state of the variabla.

example, the presence/degradation of an initial

condition.

Concerning influencing factors (denoteml), they are

Figure 2. Example of IRA Bayesian elementary patter

Systems studies through the IRA method are often
complex, i.e. with an important number of variabkasd
dependence links between them. Figure 2 shows an
elementary pattern of the IRA model (due to the
confidentiality restrictions, the global model camot be



assigned to the relationship between two nodesdbasean B. Uncertainty propagation test case

expert elicitation grid (Figure 3) according to tinepact of 7o study the propagation of epistemic uncertainighiw
the upstream variable on its downstream variabte Vialue an EN, the simple case of V-structure is used afiguihe
represents the lower limit af. For instance, in the case of astudy of various sources of uncertainty. In thist Ease, we
little impact a = 0.7 and if there iso impact a = 0.9. Itis use a recurrent elementary structure of the gldBa
difficult, for the expert, to decide between twonsecutive networks. It allows understanding easily the mougli
values ofa in the elicitation grid. Moreover the value inmethod. Then, this reasoning can be applied towthele
Figure 3 represents an interval as defined in theré 4. model.

Here appears the importance of the Dempster-ShaferThe model consists of two nodes characterizinghwuman
theory, which helps to take into account this utaiety and indicators describing a phase for preparing maartea or
enables the influencing factor to be defined by mseaf operating action, itself described by the varidbieparation.

intervals. Two other nodes are added to these three node$irentdte
computation [2] of belief and plausibility measuné the
Parameters | @ parameters o effectiveness of the preparation phase to be ctaiaed

No impact 0.9 No impact [0.9:1] (Flgure 5)' o .
Lempat | 0.7 Ltleimpact | 07109 For each of the human indicators, two states afiaate
— 0'5 — 0'5 ' 0'7 {present} if the indicator complies fully with the previolys
ma mp [ : [ defined criteria for characterizing it,dégraded} if the
Highimpact | 03 Highimpact | 10.3:0.5 indicator does not comply with one or more of thi¢eda
Totalimpact | 0.1 Total impact_| [0.1;0.3] defining it. The impact of the human indicator Wi more

Figure 3. Elicitation grid of
the influencing facton.

Figure 4. Htition grid for
the factoa using intervals.

The prior distribution is based on the observatiorae
on already studied test-cases (Table I). Howevesdme
cases, the modality of the variable is not perjeatiown (for
instance if a component is out of order its failgtate is
unknown before diagnosis or if an indicator is nbserved
every modalities are possible). The uncertainty lwariaken
into account as proposed in Table Il. These tabiesn for
illustration are those used for defining indicatars the
following simulations.

Table I.
PRIOR DISTRIBUTION WITHOUT IMPRECISION

Indicatol
{present} | {degraded}
0.65 0.35

Table II.
PRIOR DISTRIBUTION WITH IMPRECISION

Indicator
{present} | {degraded} | {present,degraded
[

0.6 0.3 [ 0.1
Table IlI.
TABLE DEFINING THE BEL(EFFECTIVE) NODE
Preparation Bel(effective)
P Believe Doubt
{effective} 1 0
{ineffective} 0 1
{effective,ineffective} 0 1
Table IV.
TABLE DEFINING THE PLS(EFFECTIVE) NODE
Preparation Pls(effective)
Plausibility Disbelief
{effective} 1 0
{ineffective} 0 1
{effective ineffective} 1 0

These two configurations of uncertainty (on théuiaficing
factors and on the prior distributions) are studieda test
case initially represented using BN. The BN is sfarmed to
an EN to take into account the various uncertanfidus we
use focal sets and masses propagation in the ENIrogdd
for IRA study.

or less high according to the sensitivity of therialle
Preparation to the humamndicators 1 andindicators 2.

A quantification method [3] is used in order to compute
the influence of the indicators on th&reparation phase.
Influencing factorsa; are used to define the relation between
the Indicator i and thePreparation phase. When several
indicators are in statedégraded} the influence is given by
the product ofa, of these indicators.

®

Indicatorl Indicator2

Pls(effective

Preparation

Bel(effective’

Figure 5. Model used for the tests.

This model is used for various uncertainty inclasio
configurations: no uncertainty on the model anédease 1),
uncertainty on the influencing factors linking th@iman
indicators and the phase preparation that theyrithes(case
2), uncertainty on the state of the human indicafoase 3),
uncertainties on the influencing factors and thatesbf the
human indicators (case 4).

For each simulation, nodes are defined describmg t
presence or degradation of human indicators witghséime
distributions (Tables | and II) and this in orderdompare
the various inferences on the network. Tbenditional
masses table (CMT) associated withpreparation node
depends on the studied case. These CMTs (equivafent
conditional probabilities tables in BN) enable the
distribution of the masses to be characterizedraaog to the



variousfocal sets defined in the study. The nodes dedicated Table VIII.

to compute the belief and plausibility of preparatiphase CMT LINKED TO CASE;‘ .

. . . reparatio
effectiveness are described using tables (Tablesd 1V). indicatorl indicator2 {effective} | ({ineffective} | {effective,ineffecti
Case 1. no uncertainty on the model and data. Tresent T 5 2

This case is the commonly used configuration an@ is  {present} { {degrzded}d - 0677 oAé 0(.)23

. . resent,degrade 5 .
Bayesian case. The CMT related to fhesparation node . {presen% 0E 03 0z

H H {degraded} {degraded} 0.35 0.37 0.28

(Table V) is therefore fairly easy to complete. Tresen deoraded] s s a5
Table V. {present] 0.5 0 0.5

{present,degraded} {degraded} 0.35 0.3 0.35

CMT LINKED TO CASEP]r-eparatio {present,degraded}, 0.35 0 0.65
indicatorl indicator2 {effective} {ineffective} {effective,ineffective}

{present} {é’;r;;ed’;%} = 83 00 V. RESULTSANALYSIS
{present] 0.5 0.5 0
{degraded} .
{degraded) = b(ImSVI 0.65 0 A. Inference and first results
able VI. . .

CMT LINKED TO CASE2 Once these different cases have been defined addleah
indicatorl ndaor2 | {ineﬁeztrsz?ratio{eﬂective etectvel simulations are cgrrled out apd provide W|.th th.éofmng
pa— {preseny 1 ) 0 results presented in a summarized way. Variousenfes on

{?:r%f:rif oL ol oe each of the four cases have been carried out utider
{degraded} {degraded] 0.35 0.37 0.28 previously defined conditions (i.e. a distributiavith or

If both human indicators are present then therébeiino  without uncertainty and with defined CMT).
impact on the effectiveness of the preparationhef dction For case 1, the probability of effectiveness is40.The
(the influencing factorst are therefore equal to 1) leading toresults on Bel and Pls bounds can be explainedusecao
100% of effectiveness. If one or both indicatoes @egraded, uncertainty (neither variability nor epistemic) hasen
it will reduce the effectiveness of the preparation considered on the indicators and the influencimgoias. Here
As there is no epistemic uncertainty in this motte, prior the obtained probabilities are only considered edsrences
distribution of{effective,ineffective} modality only comprises for the following cases which deal with uncertadsti All of

zero values. the results are gathered in Table IX and Figure 6.
Case 2: uncertainty on the influencing factors linking the 1 -
human indicators and the phase of preparation. 095 -

This case only deals with influencing factors whigte 09 |
included in intervals. As both factors here ardiatly set at . | 0,8637 0.8787
0.5 and 0.7, intervals [0.5; 0.7] and [0.7; 0.9 estained. 08 |

Changes in the previous case will occur when oneven — 0,7735
both indicators are degraded. Indeed, the factaedy within 07 | 07384 07384 0,704 0,704

the intervals. Consequently, lifdicator 2 is degraded (its
factor is included in the interval [0.7; 0.9]) wadeup at
worst with effectiveness reduced to 0.7 and in¢iffeness at _ _ _ _

0.3 ©@=0.7) and at best effectiveness at 0.9 an Nouncertointy f;;ff::f:g;,:ﬁ; U”fﬁ;ﬁ?’:ﬂr}m f;;ff::f:g;,:ﬁ;
ineffectiveness at 0.1€0.9). Thus, the 0.2 enabling passag indicators  and the presence of
from 0.7 to 0.9 of efficiency is situated in _. . | rdetos
{effective,ineffective} modality, characterizing uncertainty. If Figure 6. Intervals ofleftfeé:ttlvenesr;s probability fioe action
both indicators are degraded, the sum of both enfting related to each case.

factors is calculated on the intervals. Therefare,this

. Table IX.
second case, we will have Table VI. VALUES OF THE BEL AND PLS BOUNDS OF CASE STUDIED
Case 3: uncertainty on the state (present or degradetheof Bel(effective) Plis(effective)
. . . . Case 1 (no uncertainty) 0.7384 0.7384
indicator upstream of the phase that it describable VII). Case 2 (uncertainty ona) 0.7384 0.8637
. inti i i h Case 3 (uncertainty on the indicators 0.70¢ 0.773¢
Case 4. unc.ertgmnes on the influencing factors and oa th e s anceriaint o o e micators) ] L
state of the indicators give the next table. - T
Table VILI. B. Contribution of uncertainties
CMT LINKED TO CASE 3 Apart from its ability to propagate the uncertaitttyough
- - P ti . . . . -
indicatorL indicator2 | oo | pnefrectey | (efiectveinetiecive |t TSk model, this exercise put forward its apilio
{present} 1 0 0 prioritize the contributions of uncertainties ore timodel
{present} {degraded} 0.7 0.3 0 . )
{present,degrader 0.7 0 03 inputs to the results. Indeed, in the test casehowit
(degraded) T 2 o5 : uncertainty, the probability of effectiveness of eth
{present,degradet | 0.3 0r 0.1t maintenance action is 0.74
{present} 0.5 0 0.5 . . .
{present,degraded)] __{degraded} 0.35 03 035 For example, considering this value as the referersed
{present,degrade« 0.3t 0 0.6E

for comparing the results including uncertaintykirtg into



account uncertainties on the influencing factors e prior
distributions on human indicators leads to a 0.&Rge
around this reference value with a spectrum cedtalmve
this value.

But the largest uncertainty affecting the effeatiess of
the preparation phase is related to the uncertantythe

This transition allows us the propagation of uraiety at a
lower cost as leaning on models and tools of treatrwhich

already exist and because the stage of allocating a

distribution function followed by one of random gamg
(which moreover do not guarantee that ranging Wi
carried out all over the whole distribution inclaodiits tail

influencing factorsa (smaller than the uncertainty on thewhen the number of calculations is not high enowagle) not

prior distribution of indicators). This leads tovegi more
emphasis to the influencing factor estimation phidise to
the study of the presence/degradation of indicators

However, the size of these intervals [Bel, PIs] nhai
depends on the initially degree of uncertainty iese two
configurations, i.e. on the influencing factorsaor the prior
distributions. Indeed, if the uncertainty on theéigators is
higher, this would result in greater imprecisiorttad results.

As far the uncertainty on the influencing factors
concerned, it will always be approximately 0.2 (daehoice
of the elicitation grid which makes it impossibte multiply
the number of levels) whereas the presence/dedpadaftan
indicator will always be more easily elicited by expert and
therefore it will be easier to reduce the relatedentainty
(for example, by having better or broader experialen
feedback).

Estimating influencing factors for this risk modeill
always be the most critical step of this risk assesnt phase.

VI. CONCLUSION

A. Characterization of uncertaintiesin |RA thanks to the
evidence theory

This implementation has demonstrated the feagibdit
characterizing the variability and epistemic unaiety and
its propagation through large-scale EN (hundredaaafes).
These first results highlight the role that undettas play in
the basic blocks of integrated risk models and equently
the need to take them into account in global moutetsrder
to increase the representativeness of our resuitsheerefore

to support a better decision-making. The lower ealu7]

obtained for the effectiveness of the action wraking into
account the uncertainty compared to the one ohtdimethe
case without uncertainty indicates that the resith no
uncertainty was optimistic. However, IRAs generaiged to
be conservative in order to ensure safety criteria.

Through this paper are able to put into practieertbtion
of the evidence theory on a real industrial compiaege to
model the uncertainties met during an IRA, in paitr with
the integration of human and organizational factorsisk
analyses which are more often direct around thénieal
system. This modeling of uncertainties was posdibile to a
transformation of a large BN (used for IRA modeis)a
large EN by adapting semantics used for BN to tledined
in the evidence theory and by using existing infese
methods (junction trees). Moreover, these worksevedile to
be realized on the basis of existing BN which medalir
system to take both aleatory and epistemic uncigai into
account in the same model.

carried out.

B. Perspectives

Applied here to an elementary motive of a charéstter
network of an IRA to study feasibility of the praadion of
uncertainties in this type of analysis, it is hdodh
necessary to develop these works on the whole miettwo
study feasibility in a “large scale”.

It is also advisable to study the sensibility of tralues in
the table defining the influence factors, on onedh#p assure
the robustness of the works and on the other hardfine
this table and the associated intervals (intervdigch are
used in particular to the risks assessment by &xper
opinions).
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