
About using beliefs induced by probabilities
Pierre-Emmanuel Doré, Arnaud Martin
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Abstract—In this paper, we present a continuous approach of
the theory of belief functions. We assume that the knowledge
of the sources of information is represented by distributions of
probability. Then we deal with the way to transform probabil-
ities into belief functions. According the nature of the sources
(objective, subjective, reliable), we apply the least commitment
principle or the principle of maximum of necessity to generate
a belief function from a probability. It is a way to take into
account our trustworthy in a source of information. To illustrate
our work, we apply the presented approach to a problem of
model based classification using imprecise sensors’ data and we
compare the results to those obtained with a classical approach of
bayesian classification. The advantage of using the theory of belief
functions is that we can model the lack of a priori informations.
Keywords: Continuous belief functions, classification, sen-
sors, models, subjective/objective/reliable source.

I. INTRODUCTION

Originally, the belief functions have been used to model
a set of probability distributions [6] and random sets [7]. In
his famous book “A mathematical theory of evidence” [24],
G. Shafer presents an interpretation of belief function where
he assignes weights on sets to represent the opinion of an
agent. From that time, the theory of belief function has
been used in various fields like sensors’ data fusion [1],
clustering [8], . . . The purpose of these works were to merge
sources of informations and to take decisions within the frame
of the theory of belief functions using continuous description
for information. Unfortunately, they have used discret frames
of discernement to represent informations on a continuous
framework. In this context, it could be a good solution to use
a continuous formalism to describe belief functions. In [25], a
mathematical framework is suggested to describe in a general
way a belief function. In particular cases (we assign weight
only on intervals) [28], [32] (or linear belief function) [18],
some approaches have been proposed. Some applications of
these works to model based classification [3], [23], [29] and
to state estimation [21] exist. Our aim is to make fusion of
information coming from sensors and expert opinions. Usually,
the information is modelized with distributions of probability.
Hence, the stake here is to be able to associate a belief function
to a probability.

To deal with such a problem, we present in section II
the approach of belief functions exposed in [10]. Using this
framework, we will take into account the state of the source
of information to generate a belief function induced by a
probability. In theory of belief functions, it is usual to apply

the principle of least commitment to chose a belief function
among a set of belief functions. We can use this principle when
we consider the set of belief functions whose the pignistic
transformation is equal to the one given by a source of infor-
mation [28]. In fact, that assumes the source of information
is subjective (cf. section III-B). Therefore we transfert the
information from singletons to sets as big as possible. If we
assume that the source of information is objective, we can
apply the principle of maximum of necessity. It comes from
the theory of possibilities [19]. In this case we decide to
modelize the probability transmitted by the source with the
most informative consonant belief function as possible (cf.
section III-C). Hence we put the most information as possible
on the smallest confidence sets as possible. To illustrate the
interest of these several approaches to build belief functions
by following these principles, we apply them to a model
based classification problem using imprecise sensors’ data (cf.
section IV). The models given by experts are supposed to be
subjective because we make the assumption the human expert
has made a bet on the behaviour of the phenomenoms he
observes. The measures transmitted by sensors are supposed
to be objective because there is no subjective point of view
which influences the results it gives. We decide to apply a
modified version of the general bayesian theorem in decision
making with a posteriori information. As we have no a priori
knowledge about the occurency of event, we will compare
this approach with classical probabilistic bayesian approach
in order to see the efficiency of this formalism to deal with
the lack of information.

II. CONTINOUS BELIEF FUNCTIONS

A. Allocation of probability

In “Allocation of probability” [25], G. Shafer links the
theory of belief functions to the “Theory of capacities” of
G. Choquet [5]. He definies the belief function bel as a
function on a multiplicative subclass E of P pΩq (H and Ω are
in E) such as bel pHq � 0, bel pΩq � 1, bel is monotone and of
order 8. In the same way, he defines the plausibility function
pl such as pl pAAq � 1�bel pAq and AA is the complementary
of A. That is a function on an additive subclass E� of P pΩq (H
and Ω are in E�) such as pl pHq � 0, pl pΩq � 1, pl is alterning
and of order 8. He explains this kind of belief functions can
be extended to P pΩq and defines two regularity conditions for
these functions, the continuity and the condensability. Working
on this framework, he proved that if bel is a belief function,



there exists an allocation of probability ρ : E Ñ M (in
fact an homomorphism) and µ a measure associated with the
probability algebra M such as bel � µ�ρ. That is an important
result. Indeed, it allows us to use the theory of measure to
compute belief functions. In this case, the real problem is
to find an efficient way to describe all the elements of the
multiplicative subclass E .

B. Index function and credal measure

In [28], Ph. Smets works on continuous belief functions on
real numbers. He proposes to put basic belief assignement only
on the intervals of R � RY t�8,8u. With this assumption,
he had an efficient way to describe all the focal elements and
made a link between belief functions on R and probability
density functions on R2 using the concept of basic belief
densities. However, this framework is quite restrictive and
in somes applications, we need to express beliefs on more
complex sets. In [10], the authors explicit an index function
to scan F , the set of all focal elements of a belief function on
P pΩq, using a set I , the index space:

f I : I ÝÑ F
y ÞÝÑ f Ipyq (1)

Credal measure µΩ is a positive measure such as»
I

dµΩpyq ¤ 1. Then we consider that a credal space is defined

by the brace
�
f I , µΩ

�
. In order to compute belief functions,

we need to define for all A in P pΩq the measurable sets in
P pIq:

F�A � ty P I|f Ipyq � Au (2)

FXA � ty P I| �f Ipyq XA
� � Hu (3)

F�A � ty P I|A � f Ipyqu (4)

Hence we have:
 The belief function:

belΩpAq �
»
F�A

dµΩpyq (5)

 The plausibility function:

plΩpAq �
»
FXA

dµΩpyq (6)

 The communality function:

qΩpAq �
»
F�A

dµΩpyq (7)

It can be used to model a belief on Borel algebra B
�
Rn

	
.

In this case, F�A, F�A, FXA must sets of BpIq for all A in
B
�
Rn

	
. In this case, the dimension of the index space, like in

Ph. Smets works, is not linked to the dimension of the frame
of discernement. We can consider the following function:

f̃ I : F ÝÑ P pIq
A ÞÝÑ F�A

(8)

This function helps us to define a homomorphism on a mul-
tiplicative subclass induced by F to a multiplicative subclass
induced by I . Hence, there is a link between the approaches of
allocation of probability and index function to describe focal
elements. In this framework, we define some basic tools. Let
µΩ

1 and µΩ
2 be two credal measures. Let combine them thanks

to the conjonctive rule of combination [31]. We can build the
credal measure µΩ

1 X© 2 [10] such as:

qΩ
1 X© 2pAq � qΩ

1 pAq � qΩ
2 pAq (9)

There are other ways to combine informations within the
theory of belief functions. One of them is the cautious rule [17]
used to combine correlated sources of information. Let f I1 and
f I2 be two index functions linked to the credal measures µΩ

1 et
µΩ

2 . Let ϕ be a change of variables such as ϕ py1q � y2 implies
f I1 py1q � f I2 py2q. The braces

�
f I1 , µΩ

1

�
and

�
f I2 , µΩ

2

�
represent the same belief if [10]:

dµΩ
1 py1q �

��det �ϕ1 py1q
��� dµΩ

2 pϕ py1qq (10)

Within this framework, we will study a particular type of belief
functions, the consonant ones.

C. Consonant belief functions

A belief function whose the focal elements are nested
is a consonant belief function. This allows us to create a
total ordering on F linked to the � relation. Hence, we can
define an index function f from I , a subset of R�, to F
such as py ¥ xq ùñ pf pyq � f pxqq [28]. The α-cuts of g, a
continuous function from Rn to R� is the set such as:

f Icspαq � tx P Rn|g pxq ¥ αu (11)

We can define an index function:

f Ics : I � r0, αmaxs ÝÑ  
f Icspαq |α P I

(
α ÞÝÑ f Icspαq (12)

We have the property that F cs�A is an element of Borel algebra.
Indeed:

F cs�A � H ñ Dαinf � inf
 
α P I|f Icspαq XA � H(

ñ F cs�A � |αinf , αmaxs (13)

Using a similar argument, we can prove that F cs�A and F csXA
are elements of Borel algebra. Hence, we can define consonant
belief functions whose the focal elements are given by the α-
cuts of a probability density function. That will be useful to
transform probabilities into belief functions. The problem of
modeling a belief with a family of nested focal elements is that
the combination of two consonant belief functions does not
induce a consonant belief function. Solutions to this problem
have been proposed in [9], [10].

III. FROM PROBABILITIES TO BELIEF FUNCTIONS

A. Pignistic transformation

In most of the cases, imperfect knowledge is modeled with
probability. Unfortunately, this framework is not suitable to
represent phenomenons such as ignorance or uncertainty [27].



Therefore we want to associate a belief function to a prob-
ability. There are operations to derivate a probability from a
belief function. One of them is the pignistic transformation.
Ph. Smets [30] has given a justication of this transformation in
the transferable belief model. He proposes to use it in order
to take decision on singletons. We propose to describe this
transformation with the equality:

BetP pAq �
»
FXA

ν pA, yq
ν pf Ipyq , yqdµ

Ωpyq (14)

If we work on a discrete frame of discernement, ν pA, yq gives
the cardinality of AX f Ipyq. We define on real numbers:

ν pA, yq � λ
�
AX f Ipyq�� ω pA, yq � δ �λ �f I pyq�� (15)

where λ is the Lebesgue measure, δ is the Dirac measure and
ω pA, yq is a number in r0, 1s used to split the basic belief
assignement of the focal elements on singletons of Ω. It is
equal to 1 if f Ipyq � A and 0 if AX f Ipyq � H. Generally,
we have ω pA, yq � ω pAA, yq � 1. The opposite operation is
quite more complexe. We will present several approaches of
this problem according the context. The aim is to associate a
belief function to a probability according the type of source
which delivers the probability.

B. Subjective source

In the theory of belief functions, the minimal commitment
principle is frequently used [12], [16]. The idea is quite simple.
To choose a belief function among a set of belief functions
and when there is no reason to prefer one to another, we
have to choose the least informative one. That assumes there
is an ordering to decide which one is the least informative.
One ordering commonly used is funded on the communality
function. Indeed, we can consider that communality function
is a way to measure the non specificity of a belief function and
that this function is linked to the conditionning process [28].
It is an interresting criterion if we know that a posteriori
information will be use in the fusion process. Let assume that a
source of information delivers a continuous probability density
function Betf , but that this probability is induced by a bet.
That implies this kind of data comes from a subjective point
of view. We note BIsopBetP q, the set of belief functions
whose the pignistic transformation gives BetP . There is a
belief function [10] belonging to BIsopBetP q whose the focal
elements are the α-cuts of Betf and the credal measure µBpRnq
is such as:

dµBpRnq pαq � λ
�
f Icspαq

�
dλ pαq (16)

Theorem III.1. Among the set of belief functions
BIsopBetP q, the belief function defined by equation
(16) is the least committed one for the communality ordering.

Proof: If
�
f I , µBpRnq	 P BIsopBetP q, we have by con-

struction pl
�Af Ipαq�� α � λ �f Ipαq� ¤ betP

�Af Ipαq� (cf.
figure 1). The belief described by equation (16) reaches the
upper bound of this inequality. We deduce that this is the least
committed one for the plausibility ordering. As this belief

function is consonant, it is the least committed one for the
communality ordering.

We can build the least committed belief function linked to
BIsopBetP q when the associated probability density function
is continuous. For discret frames of discernement or in par-
ticular cases of continuous belief functions, this kind of result
has already been obtained [28]. When an expert modelizes a
phenomenom with a probability density function, we can use
this transformation to combine a belief function with a given
distribution of probability. Indeed, we assume that the opinion
of an expert is quite subjective.

λ(fcs(α1))

dλ(α1)

α2

0

dν(α2)

α1

λ(fcs(α))=ν([α,αmax])

αmax

λ(fcs(α)) dλ(α)
α dν(α)

Figure 1. Two different ways to build belief functions from a probability
density function Betf .

C. Objective source

When we work with an “objective” source of information,
we can apply the principle of maximum of necessity. This
principle comes from the theory of possibility [19]. The idea
is to work with the most informative distribution of possi-
bility (for the necessity ordering) which fulfils the following
assumptions. The first one is that the possibility dominate
the probability, i.e. for all A measurable Π pAq ¥ P pAq.
The second one is that the ordering must be kept, i.e.
P pAq ¥ P pA1q ô Π pAq ¥ Π pA1q. These conditions can be
transposed in the framework of belief functions by setting
that the plausibility function is equal to the possibility and
the necessity is equal to the belief function if we work with a
consonant belief function [11]. Finding a belief function which
verifies these properties is equivalent to find a nested focal
sets family such as for all A belonging to this family, A is the
smallest set (for the inclusion ordering) such as P pAq � β.
This sets family corresponds to the confidence sets in theory
of probability. If we have as input a continuous probability



density function Betf , the focal sets can be described with the
α-cuts of this function. We obtain a belief function defined by�
f Ics, µ

BpRnq	 such as if we adapt the result obtained in [19]:

plBpRnq pxq � 1�BetP
�
f IcspBetf pxqq

�
(17)

i.e.:
dµBpRnq pαq � αdV pαq (18)

with V prα, αmaxsq � λ
�
f Icspαq

�
(cf. figure 1). When we

want to define the mean of a parameter using statistical data,
we define a confidence set centered on the empirical mean,
Xp, of the sample of measure. In [2], the authors decide
to associate a set of pignistic probabilities to a sample data.
Hence, the consonant belief function induced by this sample
is the most committed one among those which dominate the
set of least commited belief functions linked to each pignistic
probabilities. With a such approach, there is a big waste of
information. The approach described in [13] seems to be best-
adapted. It develops the same idea that we have just described.
To define the confidence set, we compute the empiric standart
deviation, Sp. We set that the confidence interval Iβat

is an
interval such as βat is the probability that the true mean is
contained by this set. When we work with a small sample
set of monodimensional measures (it contains p elements), we
have:

Iβat
�

�
Xp � at

Sp?
p� 1

, Xp � ax
Sp?
p� 1

�
(19)

with at �
��Xp � t

�� ?p�1

Sp
and St pat, p� 1q � 1�βat

2 (St
refers to the Student’s distribution). We can use t belonging
to

�
Xp,8

�
to define an index function. The focal sets are the

confidence sets Iβat
and:

plBpRnq ptq � 1� βat � 2 � St p�at, p� 1q (20)

Hence we have:

dµBpRnqptq � 2 � Γ�p2�
Γ
�
p�1

2

a
π pp� 1q

	
$''''%1�

$''%t�Xp

Sp

,//-
2
,////-
� p

2

dλ ptq (21)

with Γ the Euler’s function. We can use this approach to model
belief function induced by data coming from sensor as it is
supposed to be an objectif source of informations.

D. An hybrid source

In either approaches modelling information transmitted
by probabilistic information sources, the aim has been to
transfert information from singletons to sets. Naturally, two
phenomenoms have appeared. A first one has been to keep
the ordering between the different kinds of representation. If
something is more probable than another, it is more plausible.
That has lead to use as focal sets the consonant sets’ family
build with the alpha cut of Betf . The second one is that the
weight has been splitted on different focal elements according
the thrusthworthy of a information source and the size of a
focal element. We can use the same approach that the one

describes in [20] and consider that there are several states for
the source of information: a subjectif one (R1) and an objectif
one (R2). Therefore we can consider the frame of discernment
R � tR1, R2u which sums up the several states of the source.
Let be µR, the belief function which represents the state of
the source of information delivering the pignistic informations.
For the sake of simplicity of the notation, we set for all y P I
µT rXs pyq � µT rXs pfpyqq. Hence, we have:"

µR pRjq � γj
µR pRq � 1�°

j γj
(22)

Now, using the methods described previouly, we can define the
belief function induced by a continuous density of probability
function knowing the state of the source. We note these func-
tions µBpRnq rRjs. The belief function linked to the ignorance
state is noted µBpRnq rRs and is equal to δRn (the vacuum
belief function) which is a function such as:

δX : B
�
Rn

	
ÝÑ t0, 1u

B ÞÝÑ
"

1 if B � X
0 if B � X

(23)

It is used to take into account the reliability of the source [24].
Hence, using the transferable belief model framework, we
have [20]:

µBpRnq �µR, µBpRnq rX � Rs
�
��

X©
X�R

µBpRnq rXsòBpR
nq�R

X©µRÒBpRnq�R

ÓBpRnq (24)

with ò, Ò and Ó which represent the deconditioning, the
balooning and the marginalisation process [26]. Hence :

µBpRnq �µR, µBpRnq rX � Rs
�
�°

j γjµ
BpRnq rRjs �

�
1�°

j γj

	
µBpRnq rRs

(25)

In spite of the fact that we have not dealt with the problem of
the evalutation of γi, we suppose that an approach similar to
the ones found in [14], [20] can be used. In the next section, we
will assume that information coming from a sensor is objective
and the one coming from an expert opinion is subjective.

IV. DECISION MAKING WITH SENSORS DATA

A. Expression of the problem
To illustrate our approach, we do classification using cin-

ematical data as in [22], [23]. It means we suppose that
according the type of target we observe, the distribution of
speed is not the same. If we consider m kinds of targets
T � tT1, � � � , Tmu and an expert defines for each target
a distribution of speed (cf. figure 2), we can associate to
this subjective probability a belief function µT rTis. In our
example, we assume that the sensor delivers an imprecise
measure of speed. If the sensor is caracterized by a standart
deviation we can assume that the information transmitted by
the sensor is a gaussian probability density function. As we
consider that the sensor is an objective source of information,
we can associate to this source of information a belief function
µ
BpRnq
c,x with x the measure transmitted by the sensor.
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Figure 2. Probabilities induced by the opinion of an expert describing the
distribution of speed of several targets.

B. A General Bayes Theorem variation

In [4], the authors decide to use credal inference in order
to deal with the lack of information in sensor context. In
our study, we prefer to keep the framework of the gen-
eral bayesian theorem (GTB) [20], [26] because it fulfills
the least commitment principle within the transferable belief
model. For the sake of simplicity, we set for all y in I
that µT rXs pyq � µT rXs pfpyqq. If we have the a posteriori
information that the value of the parameter is in X , we have
according the GTB for all A included in T :

µTrXspAq�
¹
TiPA

plBpRnqrTispXq
¹
TiPA

�
1�plBpRnqrTispXq

	
(26)

This equality can be deduce from :

µTrXs�
$'''% X©
iPv1,mw

µBpRnqrTisòBpR
nq�T

X© δ
BpRnqÒBpRnq�T
X

,///-
ÓT

(27)

with δ
BpRnq
X representing the information “the true value of the

parameter is in X”. In our case, the a posteriori information
coming from the sensor is modelized by a belief function

µ
BpRnq
c,x � δ

BpRnq
X . Hence, we have:

µT
�
µ
BpRnq
c,x

�
�
$'''% X©
iPv1,mw

µBpRnqrTisòBpR
nq�T

X©µ
BpRnqÒBpRnq�T
c,x

,///-
ÓT

(28)
We deduce from this equality that:

µT
�
µ
BpRnq
c,X

�
pAq �

»
I

µT
�
f Ic

c,X pyq
�
pAq dµBpR

nq
c,X pyq (29)

With this approach, we are able to take a decision in case of
model based classification with uncertain data.

C. Classification of target with imprecise sensors’ data

Usually, to do classification we use the bayes theorem in
a probabilistic framework. If we do not know the probability

a priori to observe a target Ti, we suppose that these events
have the same probability. It has an influence on the decision
we take when we have a measure (cf. figure 3). If we work in
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Figure 3. Decision making in classical bayesian framework

the framework of the theory of belief functions, we can use
the belief function describes by the equation (29) to define our
knowledge by taking into account a measure from a sensor. In
order to take a decision on singletons, we can use the pignistic
transformation. Hence, we have:

BetP pTiq �
»
FXTi

ν
�
Ti X f Ipyq�
ν pf Ipyqq dµT

�
µ
BpRnq
c,x

�
pyq (30)

By applying this transformation, we obtain the decision pattern
illustrated by the figure 4. As in [23], we see that the lack of in-
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Figure 4. Decision making in belief function framework

formation is best-handled within the theory of belief function.
Indeed, as we don’t assume an a priori knowledge about the
occurency of appearance of a target, we take decisions using
only the informations we have. Hence, when the situation is
ambiguous, we do not favour an option to another.



V. CONCLUSION

In this paper, we have proposed a way to take into account
the imprecision of a source of information. We assume that a
source whose the information is model with a distribution of
probability could be as well modeled with a belief function.
However, to transform a probability into a belief function,
we have to take into account the state of the source which
provides the information. An objective source is modelized
with the belief function the most informative as possible and a
subjective one with the least informative belief function linked
to the information transmitted by the source.When the source
is not reliable, we use the vacuum belief function to modelize
the information transmitted by the source. In order to illustrate
our work, we have made the assumptions that the opinion of an
expert is quite subjective and the information given by a sensor
is objective. Hence, using the ballooning, deconditionning and
marginalisation process, we have proposed a variation of the
General Bayes Theorem in order to take decision in a context
of lack of a prior information, imprecise a posteriori data and
model based classification. The results obtain looks like those
obtain by B. Ristic [23] but in our case, we can consider in a
finess way the information transmitted by the sensor.

Several applications of this work are planned. One of them
is to use these results to make classification as in [15]. As we
do not use the same procedures to create belief functions from
probabilities, we expect to obtain better results. Another one is
to use this work to estimate parameters from the data of several
sensors. It could be useful to take into account the trustworthy
and the reliability of sources of information. Some points need
further development. We have to find an efficient method to
compute the volume and the probability of a confidence set, to
suggest a way to determine the state of a source of information
and to propose a rule to keep a consonant belief function after
combination.
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