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Abstract—We propose in this paper to reconstruct the plau-
sibility function curve in combination operations on continuous
consonant basic belief densities (bbd). First are presented prop-
erties of nested focal elements that lead to a set based graphical
representation of focal sets. Examples of belief functions for
classical pdfs precedes then a proposal of simplification of the
plausibility formulation. This is done for singletons in conjunctive
and disjunctive combination operations with help of the focal el-
ements properties. Conflict existing between information sources
is then evoked with at last some tracks to follow for conflict
management.
Keywords: Continuous belief functions, focal sets graphical
representation, plausibility curve reconstruction, conjunc-
tive and disjunctive rules of combination, conflict, conso-
nant bbds.

I. I NTRODUCTION

Continuous belief functions consonant focal domains can
be strictly ordered using a continuous index. As we will see,
we use this property to propose multidimensional graphical
representations of focal domains. This is especially useful to
represent the focal domain’s layout after combination opera-
tions. Labeling focal sets helps also to simplify the plausibility
function relations and to express the conflict existing between
agents of evidence.

II. BASICS OF CONTINUOUS BELIEF FUNCTIONS

A. TheR, I and T sets
Smets [1] defines the set of extended real numbersR =

R ∪ [−∞,∞] as the set of real numbersR increased of the
two infinity elements.
In this way does the setI[α,β], α, β ∈ R, α < β of closed,
half open and open intervals onR correspond to:

I[α,β] = IΩ = {[x, y] , (x, y], [x, y), (x, y) : x, y ∈ Ω = [α, β]}.

The T[α,β] set reserved to the closed intervals [x,y] ofI[α,β]

is composed of their pairs of bounds (x,y).

Note that the general caseI = I[−∞,∞] includes the
[−∞,∞], [−∞, y], [x,∞] intervals and∅ with [x, y] = ∅
if x > y.
Following definitions are given onI and cover the cases where
the domainIΩ is a finite intervalΩ = [Ω−,Ω+].

B. Basic belief density

A ’basic belief density’ (bbd) is a non negative functionmI

on I such thatmI(A) = 0 if A is not a closed interval inI.
The integral ofmI on I is calledINT ≤ 1 [1].

C. Normalized bbd

mI is a normalized bbd if its integralINT is equal to 1
otherwisemI(∅) = 1−INT [1]. Agents of evidence deriving
from probability density functions induce normalized bbds.

D. Least commitment

To apply the least commitment (LC) principle consists in
never ’give more belief than justified’ to a bbd that is also
consonant if its focal set is composed of nested intervals [1].

E. Focal set
Suppose a bbdmI . The closed intervalsA = [x, y] of I

such asmI(A) > 0 are calledfocal elementsof I [1]. We
define the focal set ofI by:

FI = {A = [x, y] : x, y ∈ R, x ≤ y, m
I(A) > 0}. (1)

F. Consonant bbd
A bbd mI is consonant when all intervals of the focal set

FI are nested. In these conditions can the whole set of focal
elements be labeled by a usually continuous index [1, 2, 3, 4].
We call z this label taking values inR+ and note the focal
intervalsAz such as:

A
z = [Az−

, A
z+], z ∈ R+, A

z− ∈ [Ω−
, µ], A

z+ ∈ [µ, Ω+]. (2)

Note thatA0 is the singletonµ.

For two different valueszi, zj of z we have:

zi < zj ⇔ A
zi ⊂ A

zj ∀zi, zj ∈ Z = [0, zmax] , zmax ∈ R+. (3)

zmax is finite or not depending on bounds values ofΩ.

Bbds and their related belief functions are Borel sigma
algebra generated byI [1]. Moreover do consonant bbds imply
infinite countable focal sets that can be ordered in accordance
to the used continuous index. This is convenient to make
measurements or integrations on their domainΩ.



G. Evidential corpus

Pieces of evidence provided by a supposed reliable source
of informationSi are described by a set of focal intervalsFi

and an associated bbdmi.
We noteEi = (Fi,mi) the pair composed of the focal setFi

and the bbdmi modeling the knowledge given by a source of
information Si on the closed finite or infinite domainΩi =
[

Ω−
i ,Ω+

i

]

.

H. Cognitive independence

Suppose two sources of informationSi and Sj and their
associated pieces of evidenceEi and Ej . As defined by
Shafer [5] and Smets [6], variablesSi and Sj are said to
be cognitively independentif the knowledge induced by the
particular value of one of them does not change our belief
about the value that the second could takeand we note it
S1⊥S2. This is typically what happends when sources of
information are sensors fixed on a same structure and if of
course they don’t interfere with each other.

III. F ROM PDFS TO CONSONANTLC BBDS

A. Introduction

On many occasions are continuous agents of evidence based
on physical phenomena that can be modeled by continuous
probability density functions. Most of these pdfs are unimodal
and are thus related to consonant bbds. In the framework of
continuous belief functions, we consider in any case that pdfs
supportsΩ are closed intervals[Ω−,Ω+] with bounds inR.
Let f be such an unimodal pdf of modeµ, varianceσ2 and
supportΩ, x a continuous random variable and at lastz a
continuous index taking values inZ = [0, zmax] , zmax ∈ R+.

B. Deduction of the focal intervals from the pdf

When the mode off is not equal to one of the support
bounds, focal elementsAz = [Az−, Az+] are thus such that
f(Az−) = f(Az+). This happens with Gaussian, Cauchy,
Laplace and some Beta and Gamma distributions for instance.
Under these conditions has Smets [1] defined a bijective func-
tion γ such that focal elements correspond to[Az−, γ(Az−)]
or [γ−1(Az+), Az+].
When µ is equal toΩ− or Ω+ as in case of strictly in-
creasing or decreasing pdfs such as Exponential and some
Gamma and Beta distributions for instance, focal intervals
correspond to[Az−, µ] or [µ,Az+] and theγ function does
not exist. We thus define two functionsγ+ andγ− such that
focal intervals respectively correspond to[Az−, γ+(Az−)] and
[γ−(Az+), Az+]. If and only if γ+ andγ− are injections thus
are they invertible andγ+◦γ− = Idx whereIdx is the identity
function on the domain ofx.

C. Standardized z index

It is convenient to index consonant focal intervals by a
standard parameter in the way to provide normalized relations
or curves for belief functions. As proposed for Gaussian
pdfs [2], in case of symmetrical unimodal pdfs with infinite

support,z corresponds to the absolute value of the standard
score:

z =
|x − µ|

σ
, z ∈ R+ (4)

and focal intervals are:

Az = [µ − σz, µ + σz]. (5)

To generalize this representation of focal elements,Az− and
Az+ can be defined aroundµ according to two functions ofz
called∆− and∆+ by:

{

Az− = µ − ∆−(z)z,
Az+ = µ + ∆+(z)z, z ∈ Z.

(6)

or equivalently:
{

z = µ−Az−

∆−(z) , Az− ∈ [Ω−, µ],

z = Az+−µ
∆+(z) , Az+ ∈ [µ,Ω+].

(7)

γ+ and γ− are thus reciprocal functions one from the other
if and only if ∆− and∆+ differ from 0.

For symmetrical or triangular pdfs with compact support,
it is possible to normalizez and ∆ functions are expressed
according to the pdf’s mode and support bounds by:

{

∆−(z) =∆− =µ − Ω−,
∆+(z) =∆+ =Ω+ − µ, ∀z ∈ [0, 1].

(8)

D. Focal intervals length

When the bijectiveγ function exists, it is possible to link
the lengths:

{

l−(z) = µ − Az− = ∆−(z)z,
l+(z) = Az+ − µ = ∆+(z)z

(9)

by the relation:

R(z) =
l+(z)

l−(z)
(10)

whereR is a ratio function defined on the domain ofz. Focal
interval Az length’s l(z) equals thus to:

l(z) =(R(z) + 1)l−(z) =
(

R(z)+1
R(z)

)

l+(z)

=(∆−(z) + ∆+(z))z.
(11)

For symmetrical pdfs,R(z) = 1 ∀z ∈ Z and in addition to an
infinite support,l is thus expressed by:

l(z) = 2σz. (12)

For triangular distributionsf(x|Ω−,Ω+, µ) with µ /∈
{Ω−,Ω+}, R is also a constant. But if only one of the two
functions γ+ or γ− is injective thenR does not exist and
one of the functionsl− or l+ equals to 0. That happens with
triangular distributions whenµ = Ω− or µ = Ω+.
For other pdfs,R and thus l are nonlinear functions as
illustrated in figure 1 showing the focal intervals[x, γ+(x)]
length in case of theΓ(2, 2) distribution forx ∈ [0, µ]. R or l
functions have then to be obtained accurately by interpolation
for instance.
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Figure 1. Focal intervals length :Γ(2, 2) pdf.
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Figure 2. Gaussian’s pdf Focal domainFi.

E. Focal set graphical representation

In addition to the model proposed by Strats [7], figure 2
illustrates the triangular shape of the domain representing the
focal set ordered in function ofz here for a Gaussian pdf . This
is always the case whenR (10) is constant but depends on the
expression used forz that is not unique. Risticet al. [2] use for
instance relation (4) when in [3, 8], authors use its quadratic
expression. This changes the focal domain’s graphical shape.

F. LC bbd deducted from a continuous pdf
From the relation given by Smets [1], according toz and

with help of l giving the focal intervals length, a bbd is
deduced from a pdf by:

m(z) = −l(z)
∂betf(z)

∂z
. (13)

G. Plausibility function simplification
The expression of the plausibility function can be simplified

in case of consonant belief densities since focal intervalsare
nested. Ifzx represents the index value of a singletonx then:

pl(x) = pl(zx) =

Z zmax

zx

m(z)dz. (14)

If zx > zmax, pl(x) = 0. That appears when the pdf’s support
Ω is finite andx /∈ Ω.
In combination operations of cognitive independent agents
does this integral form allow to separate integrals.

IV. EXAMPLES OF BELIEFS DEDUCED FROM CLASSICAL

CONSONANT PDFS

A. Introduction

In this section and for a lot of common consonant bbds we
provide expressions of:
• z, the numeric index,
• l, the focal intervals length,
• f , the pdf,
• m, the bbd deduced from the pdf,
• M , the integral of the bbd,
• Pl, the plausibility function.
Note that Pl(z) = 1 - M(z) since bbds are normalized.

B. Normal pdf
In this case,z is given by equation (4),l by equation (12)

and the pdf by:

f(z) =
1√
2πσ

e
− z2

2 . (15)

The bbd is a Maxwell-Boltzmann distribution witha = 1
and is given by:

m(z) =

r
2

π
z
2
e
− z2

2 . (16)

The bbd’s integral is given by:

M(z) = erf(
z√
2
) −

r
2

π
ze

− z2

2 =
2√
π

γ

�
3

2
,
z2

2

�
, (17)

whereγ(a, x) is the lower incomplete gamma function [9].
The plausibility corresponds to:

Pl(z) = erfc(
z√
2
) +

r
2

π
ze

− z2

2 =
2√
π

Γ

�
3

2
,
z2

2

�
, (18)

whereΓ(a, x) is the upper incomplete gamma function [9].
Figure 3 illustrates these normalized functions.

C. Laplace pdf
For a Laplace density,z is given by relation (4),l by

equation (12).
The pdf is given by:

f(z) =
1

σ
√

2
e
−
√

2z
. (19)

The bbd equals to:

m(z) = 2ze
−
√

2z
. (20)

The bbd’s integral is given by:

M(z) = 1 − (1 +
√

2z)e−
√

2z
. (21)

The plausibility is given by:

Pl(z) = (1 +
√

2z)e−
√

2z
. (22)
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Figure 3. Normalized basic beliefs induced by a Gaussian pdf.

D. Triangular pdf

Triangular pdfs can be used in place of some unimodal Beta
and Gamma distributions for which the R ratio (10) does not
be linear. For triangular pdfs,z ∈ [0, 1] is given by relation (7)
with ∆ parameters as in (8).
The length of focal intervals is:

l(z) = (Ω+ − Ω−)z. (23)

The pdf is given by:

f(z) =

{

2(1−z)
Ω+−Ω− : z ∈ [0, 1],

0 : otherwise.

The bbd is given by:

m(z) = 2z. (24)

The bbd’s integral is given by:

M(z) = z
2
. (25)

The plausibility is given by:

Pl(z) = 1 − z
2
. (26)

V. SINGLETONS PLAUSIBILITY IN COMBINATION

OPERATIONS OF INDEPENDANTCONSONANT BBDS

A. introduction

We propose to construct the plausibility curve resulting of
the combination of consonant cognitive independent piecesof
evidence. Suppose a random variablex on Ω = [−∞,∞]
and two consonant cognitive independent pieces of evidence
Ei and Ej of focal intervals ordering indexeszi and zj . If
we considerEi andEj resulting of two symmetrical pdfs with
infinite support and modes such asµi < µj , then we have the
following indexes values for a given singletonx:

{

zx
i = |x−µi|

σi
, zx

i ∈ R+,

zx
j =

|x−µj |
σj

, zx
j ∈ R+.

(27)

x

A B

C

D

F

Zj

1

Zi

a3

a1

a2

E

mi mj-

sj

zi
X zj

X( , )

Fi

X

Fj

X

0

Fi

X

Fj

X

2

3

mi mj-

si

Figure 4. Venn diagram of symmetrical pdfs combination.

We use a set approach as in [4] and noteFx
i and Fx

j the
subsets of intervals ofFi and Fj that intersect withx, Fx

i

andFx
j their complements.

B. Graphical representation of sets

Figure 4 illustrates the organization of intervals ofFixFj

relatively to values ofx by a Venn diagram. The whole
domain representsFixFj into a Cartesian coordinate system.
Axes correspond to the (positive)z indexes of the focal sets
concerned by the combination hereFi andFj . Whenn agents
have to be combined, the domain is a n-dimensional space.
Axes representFx

i , Fx
j sets and their complements separated

at locationszx
i and zx

j . Subsets ofFixFj represented on the
diagram by letters correspond to those specified here after:
• A : Fx

i xFx
j • B : Fx

i xFx
j ,

• A∪B : FixFx
j • B∪C∪D : Fx

i xFj ,
• C∪D : Fx

i xFx
j • E∪F : Fx

i xFx
j ,

• D∪E : Fi ∩ Fj = ∅ • D : Fx
i ∩ Fj = ∅.

Pairs(zx
i , zx

j ), x ∈ Ω draw lines①, ② and③. According to
zx
i , zx

j relations, the intermodal distance|µi−µj | and for bbds
based on symmetrical pdfs with infinite support, line relations
correspond to:















① : zx
j =

|µi−µj |+σiz
x
i

σj
, x ∈ [−∞, µi],

② : zx
j =

|µi−µj |−σiz
x
i

σj
, x ∈ [µi, µj ],

③ : zx
j =

−|µi−µj |+σiz
x
i

σj
, x ∈ [µj ,+∞].

(28)

From line directions we deduce also in case of such pdfs that:

α1 = α2 = α3 = |arctg(
σi

σj
)|. (29)

C. Plausibility of a conjunctive combination
The plausibility of the conjunctive combination of two cog-

nitive independent pieces of evidenceE1 andE2 at singleton
x corresponds to:

pl1 ∩©2(x) =

Z Z
Fx

1
xFx

2

mi(z
x
1 )mj(z

x
2 )dz

x
1 dz

x
2 . (30)
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Figure 5. Plausibility curve of conjunctive combination of 3agents of
evidence deduced from Gaussian pdfs.
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Figure 6. Plausibility curve of disjunctive combination of 3agents of
evidence deduced from Gaussian pdfs.

From (14) and since (E1⊥E2):

Pl1 ∩©2(x) = Pl1(x)Pl2(x),
= Pl1(z

1
x)Pl2(z

2
x)

(31)

wherez1
x and z2

x label the agents of evidence focal setsF1
andF2.
Whenn independent cognitive agents of evidence have to be
merged, relation (31) corresponds to:

Pl1 ∩©... ∩©n(x) = Πi=n
i=1 Pli(x). (32)

This non-normalized combination operation is commuta-
tive, associative but not idempotent. As in probabilities,the
combination of two similar agents produces a more precise
result. Figure 5 shows the result obtained when merging
3 conflicting pieces of evidence based on Gaussian pdfs
(N (x; 5, 4),N (x; 6.5, 1),N (x; 7.5, 0.5)).

D. Plausibility of a disjunctive combination
The inclusion-exclusion principle is also valid for infinite

sets [10]. In figure 4, the union ofFx
i andFx

j corresponds to
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Figure 7. Plausibility curve of disjunctive combination of 3agents of
evidence deduced from Gaussian pdfs: intermode details.

A ∪ B ∪ C ∪ D and thus:

|Fx
i ∪ Fx

j | = |Fx
i | + |Fx

i | − |Fx
j ∩ Fx

j |,
= |FixFj | - |Fx

i xFx
j |.

(33)

Note that the set calledD in figure 4 leads to conflicting
intervals and thus to∅. A refinement [5] ofFi andFj toFixFj
is then done with help of intervals without mass. Convexity
of disjoint intervals[ai, bi] ∈ Fi, [aj , bj ] ∈ Fj using min (∧)
and max (∨) operators is done by:

A = [a, b]

������ A = Ai ∪ Aj ∪ A∪ ∈ FixFj ,
Ai = [ai, bi] ∈ Fi , Aj = [aj , bj ] ∈ Fj , Ai ∩ Aj = ∅,
A∪ = [(ai ∨ aj) ∧ bi ∧ bj , ai ∨ aj ∨ (bi ∧ bj)] .

(34)
From relations (33), the plausibilityPl1 ∪©2(x) in case of

cognitive independent agentsE1 andE2 based on normalized
bbds is given by:

Pl1 ∪©2(x) = Pl1(x) + Pl2(x) − Pl1 ∩©2(x),
= 1 − (1 − Pl1(x))(1 − Pl2(x)),
= 1 − M1(x)M2(x).

(35)

This corresponds to Smets DRC plausibility relation [6].
When mergingn agents of evidence, the relation (33) cor-
responds to:

Pl1 ∪©... ∪©n(x) = 1 − Πi=n
i=1 (1 − Pli(x)),

= 1 − Πi=n
i=1 Mi(x).

(36)

Figure 6 shows the result of the singleton’s disjunctive
plausibility obtained by merging the same pieces of evidence
as in case of the conjunctive combination. Figure 7 illustrates
details of the intermode interval[5, 7.5] showing initial plau-
sibility peaks preservation.
Since based on normalized bbds, this combination operationis
also normalized. From relation (35) we see that the operation
is commutative, associative but not idempotent.

E. Conflict
The conflict’s expression proposed in [8] can be expressed

according to thez labels of the bbds to be merged and the
intermodal distance|µ1−µ2|. If we suppose the modes of two
consonant unimodal pdfs such asµ1 < µ2, ∆ parameters as
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Figure 8. Conflict map for Gaussian pdfs.

in relation (8) and bounded or infinite supports then does the
partial conflict relation existing between two induced pieces
of evidence by the pdfs correspond to:

m1 ∩©2(∅) =

Z z1=zM1

z1=0

Z z2=zM2

z2=0

m1(z1)m2(z2)dz2dz1 (37)

with: 8<: zM1
= min( |µ1−µ2|

∆+

1

, zmax1
),

zM2
= min(

|µ1−µ2|−∆+

1
z1

∆−

2

, zmax2
).

(38)

This formula holds for pdfs with∆−/+
i = 0, i ∈ {1, 2} and

zMi
= zmaxi

in that case.
Using the bbd’s integral form in relation (37) the weight of
conflict becomes:

m1 ∩©2(∅) =

Z z1=zM1

z1=0

m1(z1)M2(zM2
)dz1. (39)

Figure 8 shows the conflict’s evolution for two Gaussian pdfs
(N1(x;µ1, σ

2
1),N2(x;µ2, σ

2
2)) with axes parameters values

K1 = |µ1−µ2|
σ1

andK2 = |µ1−µ2|
σ2

.

F. Conflict management and adaptive combination

Especially in case of finite supports may the conflict grow
to 1. In [11], Desterckeet al. propose a combination princi-
ple in the possibilistic theory framework based on maximal
coherent subsets that takes partial conflicts into account for
combination. Authors first use conjunctive rules at different
α-cut levels to merge information sources on intervals where
they agree before to finally use a disjunctive rule to combine
the previous partial results.
From an other point of view many authors proposed adaptive
combination rules weighting conjunctive and disjunctive rules
of combination. In [12], Floreaet al. propose a general
formulation of most of them.

VI. CONCLUSIONS

Much sensors deliver information based on unimodal (con-
tinuous) pdfs. When merging these data for decision making
based on the plausibility, it is important to get this function

on the frame of discernment. The calculus can be done in
real-time or even by interpolation of prerecorded results.Non-
normalized conjunctive combination also provides the degree
of discordance between information sources. This calculushas
to be done again at each new sample and by a numerical
integration approach. Here again, it can be useful to have
recorded a lot of items in a matrix. If more than two infor-
mation sources have to be merged, these partial conflicts can
for instance be added to calculate a kind of global conflict. At
last, conjunctive and disjunctive combination results presented
here can be mixed according to the conflict value as done
in adaptive combination in the way to be more confident or
cautious in applications behaviors or measurements.
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