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Abstract—This paper considers ensembles of tree-structured
classifiers using multi-view learning. An essential requirement
to train an effective classifier ensemble is the diversity among
the individual basic classifiers. In order to construct diverse
individual classifiers, it is assumed that the object to be classified
is represented through multiple feature sets (views). Different
views of the data can then be combined to improve the accuracy
of the learning task. For the fusion of the individual decisions (of
tree classifiers in this case) the Dempster-Shafer approach has
been investigated. Numerical experiments have been performed
on two benchmark data sets: a data set of handwritten digits, and
another data set of 3D visual objects. Results show that multi-
view learning can improve the performance of the individual tree
classifiers.
Keywords: Dempster-Shafer Evidence theory, pattern
recognition, multi-view learning, radial basis function
neural networks, multi-class decomposition.

I. I NTRODUCTION

The growing interest in combining classifiers is due to the
fact that computing a best individual classifier for a classi-
fication task is difficult from a computational and statistical
perspective. In addition, the use of a multiple classifiers allows
the exploitation of complementary discriminating information
that the group of classifiers may provide. Combining such a
group of classifiers attempts to produce a more accurate clas-
sifier decision than a single classifier of the group. Combining
classifiers to achieve higher accuracy is an important research
area in a number of communities such as machine learning,
pattern recognition, and artificial neural networks, and appears
under different notions in the literature, e.g. multiple classifier
systems (MCS), classifier fusion, classifier ensembles, divide-
and-conquer classifiers, mixture of experts [1]. Error diversity
is an essential requirement to build an effective classifier
ensemble. Diversity among classifiers means that they have
independent (uncorrelated) errors. There is no unique diversity
measure, e.g. in [2] ten different measures have been proposed
by Kuncheva, such as correlation coefficient, disagreement
measure and doubt-fault measure. Obviously, there is a trade-
off between the diversity of the classifiers and their accura-
cies. Many techniques for constructing ensembles consisting
of diverse individual classifiers have been developed. One
technique is based on combining classifiers trained on differ-
ent training sets, i.e. bagging [3] and boosting [4]. Another
technique to promote the diversity is based on combining

classifiers trained on different feature subsets, such as Random
Forests [5]. Feature subset selection is time-consuming and
sometimes deleting parts of the feature set degrades the
performance of the individual classifiers. Hence, this technique
is efficient only if the features are redundant. In this paper,
a new ensemble method, denoted asMulti-view Forests, is
proposed, a set of tree-structured classifiers are chosen asthe
base classifiers. Tree classifiers can be used to decompose
multi-class recognition problems into less complex binary
classification subtasks. Dempster-Shafer evidence theorycan
be applied as soft combination rule to fuse the intermediate
results of the node classifiers and to produce the final decision
of each tree. After that it can be used again to combine the
results of the different trees in the forest. The rest of the
paper is organized as follows: In Section II and III Multi-view
Forests and the evidence-theoretic approach are explained,
and in Section IV results of applying the proposed method
on object recognition are presented. Section V offers the
conclusion.

II. M ULTI -V IEW FORESTS

A multi-view forestis an ensemble of tree-structured clas-
sifiers, and a tree classifier can be seen as a hierarchical
ensemble of binary classifiers which solves a multi-class
classification task using a single feature set (calledSingle-
View Tree) or even a group of feature sets, then it is called
Multi-View Tree. Let L = {(xµ1, . . . , xµn, yµ)|xµv ∈ Xv, v =
1, . . . , n and yµ ∈ Ω, µ = 1, . . . , N} be the training data set
(xµ, yµ) : µ = 1, . . . , N where xµ is a data point described
by n feature sets, whereyµ denotes the class label ofxµ and
Ω = {ω1, . . . , ωK} is the predefined set of classes.

A. Multi-View Learning

Multi-view learning is a machine learning approach where
each pattern is represented by many features obtained through
different physical sources and sensors or derived by different
feature extraction procedures. For example, a web page can
be represented by different views, e.g. a distribution of words
used in the web page, hyperlinks that point to this page,
and any other statistical information. Multi-view learning was
introduced for semi-supervised learning by Blum and Mitchell
for Co-training [6], where they proved that having multiple
representations of a particular object can improve the classifier



performance using unlabeled data. Multi-view learning has
been applied in clustering as well, for instance Gupta and
Dasgupta [7] proposed a multi-view hierarchical clustering
algorithm (see Algorithm 2 and Figure 1). It depends on the
assumption that different views may have different distance
measures leading to different clusterings. This method seems
to work better than taking a linear combination of the distance
measures, or appending the different feature sets together.
In [7], the tree structure has been constructed through a
top-down approach using the best feature set at each split
point in the tree. To select the best feature set, agglomerative
clustering is applied to each feature set to produce a pair
of clusters. Intuitively, the required best feature set is the
one that provides the most well-separated clusters. A scale
and feature independent criterion,evaluate, to measure the
separation quality of a pair of clusters is defined by the ratio of
the inter-cluster distance to the sum of inner-cluster distances.

B. Tree-Structured Multi-class Decomposition

Many real-world problems are multi-class problems, e.g.
optical character recognition. Typically these multi-class prob-
lems are decomposed into multiple two-class classification
problems. In theOne-against-Othersdecomposition scheme,
a K-class problem is decomposed intoK two-class problems
where a binary classifier is trained for each class to discrim-
inate it from the otherK-1 classes. A major drawback of
this approach is theFalse Positives. During the classification
phase, it is expected that exactly one of theK classifiers
replies a positive answer but for largeK often more than one
classifier reply positively which is a tie that must be broken
by additional criteria. TheOne-against-Onescheme is another
straightforward approach to solve the multi-class problem.
Here for each pair of classes a binary classifier is trained,
and therefore, to solve aK-class classification problem,K(K-
1)/2 binary classifiers have to be trained and evaluated in the
classification phase. IfK is large, the number of classifiers is
very large compared to theOne-against-Othersscheme.

The task of the tree-structured approach is to decompose
a given K-class problem into a set of simplerK-1 binary
problems and to train classifiers to solve the binary problems
at the internal nodes within the tree through a base learning
algorithm (BaseLearn). In the classification phase, for a
given instancex, the intermediate results of the internal
classifiers are combined through a given combination method
(TreeCombiner) to produce the final decision of the ensem-
ble.

The approach works as follows: First, the set ofK classes
(Ω) is split into two disjoint subsets, known as meta-classes
or super-classes. Then these meta-classes are again split re-
cursively until each meta-class contains one of the original
classes. The resultant binary tree hasK leaf nodes, one for
each original class andK-1 internal nodes, each associated
with two meta-classes and a binary classifier. (See Algorithm
1).

1) Tree Training Phase:In the first step, the tree is gener-
ated by applying a splitting method recursively to split the

Algorithm 1 Tree Ensemble Learning Algorithm
Require: L - set ofm labeled training examples

Ω = {ω1, . . . , ωK}- set of classes
BaseLearn - base learning algorithm
TreeCombiner - hierarchical combination method
Training Phase

1: Ω1 ← Ω
2: Generate Class Hierarchy as follows:

1) C ← {(ck, ωk)}Kk=1 ← GetClassCentroids(L)
2) hierarchy ← BuildNode(Ω1, C)

3: for each internal nodej at hierarchy do
4: Filter the training setL as follows:

Lj = {(x, y)|x ∈ Ωj andy = 0 if x ∈ Ω2j andy = 1
if x ∈ Ω2j+1}

5: Train binary classifier,hj ← BaseLearn(Lj)
6: end for

Prediction Phase
7: return TreeCombiner(x, hierarchy) for a given in-

stancex

Algorithm 2 BuildNode - (Bottom-Up Approach)
Require: Ωj - set of classes assigned to tree nodej

Cj - set of centroids of classes in metaclassΩj

1: if |Ωj | = 1 then
2: Add a leaf nodej to hierarchy that represents class

Ωj

3: else
4: Add an internal nodej to hierarchy that represents

metaclassΩj

5: for v = 1 to n do
6: Initially, put each class inΩj in a separate cluster
7: repeat
8: Get the two most close clusters inΩj

9: Merge these two clusters into a new cluster
10: until the number of remaining clusters is two
11: Denote the remaining clusters,Ω

(v)
2j andΩ

(v)
2j+1

12: scorev ← evaluate(Ω
(v)
2j , Ω

(v)
2j+1)

13: end for
14: Get the winner view,w = arg max1≤v≤nscorev

15: C2j ← set of centroids of classes inΩ(w)
2j

16: BuildNode(Ω
(w)
2j , C2j)

17: C2j+1 ← set of centroids of classes inΩ(w)
2j+1

18: BuildNode(Ω
(w)
2j+1, C2j+1)

19: end if
20: return hierarchy

set of classes at each node of the tree into two disjoint
subsets, until every subset contains exactly one class. The
set of classes can be split randomly into two disjoint subsets
but often some classes are similar (called confusion classes).
For example, in optical character recognition,o, O and Q

might be considered as members of a certain confusion class
due to their visual similarity. Therefore, it is recommended



Algorithm 3 BuildNode - (Top-Down Approach)
Require: Ωj - set of classes assigned to tree nodej

Cj - set of centroids of classes in metaclassΩj

1: if |Ωj | = 1 then
2: Add a leaf nodej to hierarchy that represents class

Ωj

3: else
4: create an internal nodej that represents metaclassΩj

5: Add nodej to hierarchy

6: for v = 1 to n do
7: Get the two most distant classes inΩj :

(cj1, ωj1), (cj2, ωj2)

8: {Ω
(v)
2j ,Ω

(v)
2j+1} = seeded-k-means(Cj , cj1, cj2)

9: scorev ← evaluate(Ω
(v)
2j , Ω

(v)
2j+1)

10: end for
11: Get the winner view,w = arg max1≤v≤nscorev

12: C2j ← set of centroids of classes inΩ(w)
2j

13: BuildNode(Ω
(w)
2j , C2j)

14: C2j+1 ← set of centroids of classes inΩ(w)
2j+1

15: BuildNode(Ω
(w)
2j+1, C2j+1)

16: end if
17: return hierarchy

practically to do the splitting using some similarity measure
or by applying a clustering method in order to keep similar
classes together in the same subset. There is a number of
various ways to measure the similarity between two classes
such as Nearest Neighbor (Single linkage), Farthest Neighbor,
Average Distance and Centroid. In this study, the distance
between classesωi andωk is the Euclidean distance between
the centroid of the training examples that belong to classωi

and that of the training examples belonging to classωk.

Figure 1. Dendrogram constructed for digits data using:image-vector(fs1),
and orientation histograms (fs2).

In addition to hierarchical clustering, k-means clustering is
used to split the set of classes into disjoint subsets to generate
a hierarchy of RBF networks (see Algorithm 3). The different
splits are evaluated using a splitting evaluation measure in an
attempt to find the best view to split the set of classes. Impurity
measures such as the Entropy or Gini index or the ratio
of inter-class distance and intra-class distance are examples
for such criteria. In this paper, both multi-view hierarchical
clustering (bottom-up) and k-means clustering (top-down)are

used to generate the tree structure. In the second step of
the tree training phase, the binary classifiers which were
assigned to the internal nodes have to be trained by using
supervised learning procedures. As binary classifiers, support
vector machines, artificial neural networks such as radial basis
function (RBF) neural networks can be used (Fig. 2).

Figure 2. Multi-View Treeconstructed for Fruits data using: Color histograms
(xµ1), orientation histograms utilizing canny edge detector (xµ2) and orien-
tation histograms using opponent colors red and green (xµ5).

III. T REE CLASSIFICATION PHASE

Two different strategies to combine the decisions of
tree-structured binary classifiers have been used throughout
this study: decision-tree-like combination and a combination
scheme which is derived from the Dempster-Shafer rule of
combination. These schemes are rather different in terms
of complexity and output type (crisp vs. soft). A simple
and fast method to get the final result from the tree is the
decision tree approach where the tree is traversed following the
individual node classifiers starting from the root node to a leaf
node which is then representing the classification result. Each
classifier decides which of its child node has to be evaluated
next, until a leaf node is reached. This combination method is
very fast. Drawbacks of this approach are: (1) Misclassification
of high-level classifiers can not be corrected; (2) it does not
benefit from the discriminating information, provided by the
classifiers, outside the path; (3) the output is a class label, it
does not provide fuzzy class memberships, and (4) majority
voting is the only possible classifier combination technique.

A. Dempster-Shafer evidence theory

It is a mathematical theory for representing and combining
evidences, which was introduced by Dempster [8] and Shafer
[9]. The reasons for using results derived from this theory
in the multiple classifiers combination are the ability to
discriminate between ignorance and uncertainty, the ability to
easily represent evidences at different levels of abstraction and
the possibility to combine evidences from different sources.
The Dempster-Shafer theory starts by assuming a universe
of discourse called theframe of discernmentthat consists



of a finite set ofK mutually exclusive atomic hypotheses
θ = {θ1, . . . , θK}.

Let 2θ denote the set of all subsets ofθ. Then a mass
function over the frame of discernmentθ is a functionm :
2θ → [0, 1] that is calledbasic probability assignment(bpa)
if it satisfies the following conditions:

m(φ) = 0 and
∑

A⊆θ

m(A) = 1 (1)

Dempster’s rule of combinationcombines the basic probability
assignments produced byn independent sourcesm1, . . . ,mn

using the orthogonal sum.

m(A) =
∑

∩Ai=A

∏

1≤i≤n

mi(Ai) (2)

In [10] it was applied to prototype-based classifiers and
calculates the belief functions from the distance measures
of different classifiers which are then combined utilising
Dempster-Shafer evidence theory. As distance measures the
inter-class-distances and intra-class-distances were used. An-
other approach similar to decision templates is used in [11]
to calculate the degree of belief. The distances between the
classifier outputs for the sample to be classified and the
mean classifier outputs calculated on the training samples
are transformed into basic probability assignments. The so
calculated evidences are then combined using the orthogonal
sum.

In order to combine an ensemble of tree-structured binary
classifiers using the Dempster-Shafer theory, it is assumed
that θk = “the hypothesis that a given instance belongs to
classωk“ and that the internal node classifiers are the sources
of evidence. First, basic probability assignmentsmj must be
derived from the outputs of the individual classifiershj within
the tree. Usually, not all classifiers produce outputs that satisfy
the conditions of probability assignments. In these cases the
outputs are transformed into basic probability assignments
(bpas) as follows: (1) all negative values are set to zero,
(2) if the sum of a classifier outputs is greater than one,
it is normalised to sum up to one. In order to account for
ignorance, the difference of the sum of the output values to one
is assigned toΩ (mj(Ω)). Then the resulting bpasmj of all
classifiers are combined usingDempster’s rule of combination
without normalization.

B. Discounting Technique

Discounting is used to propagate the outputs of high-
level classifiers to the classifiers at the lower levels. Thatis,
the output of each internal node classifier is multiplied by
the discounted output of the respective predecessor classifier
where the root node classifier output is not discounted. The
motivation for discounting is the fact that a number of clas-
sifiers will be enforced to respond to instances that actually
belong to classes that are unknown to them. For example,
a classifierfj that discriminates betweenΩ2j = {1, 5} and
Ω2j+1 = {2, 6} has to label an instancex belonging to class
3. In this case, it is desirable thatfj1(x) andfj2(x) tends to

zero but at the real situation,fj1(x) or fj2(x) may tend to
one. If at least one classifier within a certain path gives a low
response to instancex, this leads to weaken any undesirable
high responses. In contrast to the decision-tree-like approach,
all the classifier within the tree, are participating in classifying
an input sample and the final output estimates a fuzzy-like
class membership of the input to all classes (soft class label).

IV. N UMERICAL EVALUATION

A. Results on the Fruits Data Set

The Fruits data set consisting of seven different objects with
120 images per class was used for classifier evaluation. Five
different feature sets were extracted: color histograms (fs1),
orientation histograms utilising canny edge detection (fs2),
utilising sobel edge detection (fs3), utilising opponent colors
black and white (fs4) and utilising opponent colors red and
green (fs5) (see [12] for more details). Experiments were per-
formed by 10 runs of 10-fold cross-validation (CV). First, the
views have to be selected from the set of all possible views. For
instance, random View Selection can be used. Another option
is to construct a tree classifier for each possible view, leading
to 31 classifiers for 5 feature sets. For the representation of
feature sets, the binary string representation is chosen. In this
representation, each subset is represented by N bits (N: number
of features in the full set). Each bit represents presence (1) or
absence (0) of that feature set in the subset. For example, if
N=4, then string 1001 will represent subset{fs1, fs4}. RBF

Figure 3. A sample of the images in the fruits data set

networks with 16 RBF neurons were used as binary classifiers.
The Bottom-Up Approach defined in Algorithm 2 is used to
build the class hierarchies. The initial centers of the RBF
neurons are determined by performing class-specific k-means
clustering, the widths of the RBF neurons are determined
by estimating the variance of the data points belonging to
the respective clusters. The output weights are learned by
calculating the pseudo-inverse solution of the least squares
approach that is a fast method yielding good classification
results. The decision-tree-like and Dempster-Shafer approach
were applied together with majority vote, min, max, sum
and product rule. Table I shows the results of using all the
possible views in building tree classifiers. The first column
shows the rank of the tree classifier of the sorted list. The
second column contains the views used by the tree classifier,
represented as a binary string indicating whether a view is in
use or not. The third and the fourth column list the CV test
set accuracy of each tree classifier for decision-tree-like(DT )
and Dempster-Shafer-based (DS) combination, respectively.



Table I
MEAN ACCURACY AND STANDARD DEVIATION OF THE TREE CLASSIFIERS

Rank View accuracy
DT DS

1 [1 1 0 0 1] 96.8± 1.66 97.2± 1.55
2 [1 1 1 0 1] 96.5± 1.82 96.9± 1.72
3 [1 1 0 0 0] 96.5± 1.92 96.9± 1.71
4 [1 0 1 0 1] 96.4± 1.82 96.8± 1.77
5 [1 0 0 1 0] 96.4± 1.96 96.4± 2.02
6 [1 0 1 1 0] 96.4± 1.96 96.4± 2.02
7 [1 1 0 1 1] 96.4± 1.99 96.4± 2.08
8 [1 1 1 1 1] 96.4± 1.99 96.4± 2.08
9 [1 0 0 1 1] 96.4± 1.98 96.4± 2.07
10 [1 0 1 1 1] 96.4± 1.98 96.4± 2.07
11 [1 0 0 0 0] 96.4± 2.03 96.6± 1.86
12 [1 1 0 1 0] 96.4± 1.97 96.4± 2.03
13 [1 1 1 1 0] 96.4± 1.97 96.4± 2.03
14 [1 1 1 0 0] 96.2± 2.04 96.7± 1.82
15 [1 0 1 0 0] 96.1± 1.99 96.6± 1.80
16 [0 1 1 1 1] 96.1± 2.29 96.2± 2.30
17 [0 0 1 1 1] 96.1± 2.31 96.2± 2.32
18 [1 0 0 0 1] 96.0± 1.94 96.4± 1.80
19 [0 1 0 1 1] 95.3± 2.61 95.2± 2.66
20 [0 0 1 0 1] 95.2± 2.36 95.6± 2.31
21 [0 0 0 1 1] 95.2± 2.67 95.1± 2.69
22 [0 1 0 0 1] 94.6± 2.23 95.1± 2.20
23 [0 1 1 0 1] 94.3± 2.55 94.7± 2.48
24 [0 1 0 1 0] 94.2± 2.52 95.2± 2.51
25 [0 1 1 1 0] 94.1± 2.57 95.2± 2.55
26 [0 1 1 0 0] 92.2± 2.99 92.8± 3.05
27 [0 1 0 0 0] 91.6± 2.70 92.2± 2.74
28 [0 0 1 1 0] 90.2± 3.26 90.7± 3.00
29 [0 0 1 0 0] 89.7± 4.08 90.3± 4.12
30 [0 0 0 0 1] 89.7± 3.24 89.8± 3.28
31 [0 0 0 1 0] 88.5± 3.38 88.8± 3.29

Table II
MEAN AND STANDARD DEVIATION OF CV TEST SET ACCURACY OF

MULTI -V IEW FOREST CONSISTING OF THE FIVESINGLE-V IEW TREES(IN

BOLD IN TAB . 1)

TCM FCM MV Fsingle

DT MV 98.6± 1.35

DS

MV 98.8±1.29
Min 98.6± 1.46
Max 99.1± 0.98
Mean 99.2± 0.89
Prod 99.1± 1.15

Best Tree 96.6± 1.86
Gain 2.58%

Table II illustrates the classification results of the ensembles
constructed by combining the five single-view tree classifiers
(MV Fsingle). The ensembles combine the outputs of tree
classifiers (produced byDT and DS respectively) using
Majority Voting (MV), minimum (Min), maximum (Max),
mean (Mean) and product (Prod) rules as forest combination
methods (FCM), respectively.

Table IV-A illustrates the classification results of the en-
semble constructed using the first, the middle and the last 10
tree classifiers in the sorted list, respectively (MV F1, MV F2,
MV F3). First, the accuracies of the five Single-View Trees
and an ensemble of them are compared. From Table I, it can
be seen that the tree classifier based only onfs1 lies at rank 11,
tree classifier based only onfs2 lies at rank 27, tree classifier
based only onfs3 lies at rank 29, tree classifier based only on
fs5 lies at rank 30 and finally comes tree classifier based only
on fs4 lies at rank 31. This means that the tree classifier based
on fs1 outperforms all other single-feature-set classifiers by

Table III
MEAN AND STANDARD DEVIATION OF THE MULTI -V IEW FORESTS

TCM FCM MV F1 MV F2 MV F3

DT MV 96.4±1.98 97.2±1.66 97.9± 1.59

DS

MV 96.6± 1.94 97.3± 1.62 98.0± 1.55
Min 97.8± 1.39 98.8± 1.19 97.9± 1.70
Max 97.8± 1.45 98.9± 1.02 98.1± 1.39
Mean 97.7± 1.45 98.7± 1.10 98.7± 1.25
Prod 97.8± 1.45 98.8± 1.00 98.7± 1.31

Best Tree 97.2± 1.55 96.6± 1.86 95.2± 2.67
Gain 0.68% 2.27% 3.53%

about 4.5%. From Table II, the best ensemble has an accuracy
of 99.2%± 0.89. Therefore, the ensemble of the Single-View
Trees outperforms the best single individual classifier. The
reason of this performance is the large diversity between the
classifiers as each of them use different feature set. Second, the
results of the Single-View Trees and the Multi-View Trees are
compared. From Table I, we can observe that the best Single-
View tree classifier, based only on feature (fs1), is at rank
11, thus 10 Multi-View tree classifiers outperform the best
single-view classifier. The tree classifier based on featurefs1,
fs2, fs5, is at first rank, and achieves an accuracy of 96.8%
± 1.66 (DT ) or 97.2%± 1.55 (DS). So it outperforms the
corresponding single view tree classifiers.

Third, we compare between Multi-View Trees and Ensem-
ble of Multi-View Trees. From Table , we can see that the
best ensemble, based on the 10 most accurate tree classifiers,
achieves an accuracy of 97.8%± 1.39 (DS + Min) while the
best of the 10 trees has a rate 97.2%± 1.55(DS). Therefore,
there is a gain in accuracy only 0.68%. For the second
ensemble, based on the second 10 tree classifiers in the list,
the best result is 98.9%± 1.02 (DS + Max). This means that
the gain in accuracy is 2.2%. For the last ensemble, based on
the following 10 tree classifiers in the list (weaker classifiers),
the best rate is 98.7%± 1.25 (DS + Mean) with a gain about
3.5%.

Finally, we compare among the three constructed ensem-
bles. From Table I, we can find that the ten classifiers of
ensembleMV F1 use fs1 as best feature set in about 4 of their
6 binary classifiers while only 6 trees of the ten ofMV F2

use fs1. Therefore, ensembleMV F2 is more diverse than
MV F1 as it contains weaker and less identical tree classifiers.
For this reason, ensembleMV F2 has more gain thanMV F1

and ensembleMV F3 gains more thanMV F2. The weaker
the combined individual classifiers, the higher the gain of the
ensemble accuracy will be. Although the ensembleMV F3 is
consisting of less accurate individual classifiers than that of
MV F1 and MV F2, the observed gain ofMV F3 is higher
than that ofMV F1 and MV F2 and also the classification
accuracy ofMV F3 outperforms the other two ensembles, in
many cases.

B. Results on the Handwritten Digits

The performance was evaluated using the handwritten
STATLOG digits data set [13]. This data set consists of 10,000
images (1,000 images per class) and each image is represented
by a 16x16 matrix containing the 8-bit gray values of each



Table IV
DESCRIPTION OF THE VIEWS OF THE HANDWRITTEN DIGITS

Feature Description

image-vector
A 256-dim vector results from reshaping
the 16x16 image matrix.

orienthisto

A 144-dim vector that represents 9 orientation
histograms where an image matrix has been
divided into 3x3 overlapped sub-images
and a histogram is created for each sub-image.

pca-40
A feature vector results from projecting the
image-vectoronto the first 40 principal
components of PCA.

rows-sum
A 160-dim vectors representing the sums
over the rows of the original image
and images results from rotating it 9 times.

cols-sum
A 160-dim vectors representing the columns
over the rows of the original image
and images results from rotating it 9 times.

Figure 4. A sample of the handwritten digits data set

pixel. Each sample is represented by five feature vectors as
described in Table IV. The Top-Down Approach defined in
Algorithm 3 is used to build the class hierarchies.

RBF networks have been used as binary classifiers such
that the hidden layer consists of 20 RBFs per class and the
number of the input layer nodes equals to the dimension of
the feature vector. The classification results are the average of
one run of 10-fold cross-validation (CV). First, we construct
a tree classifier for each possible view. Table V illustratesthe
performance of the 5 single-view tree classifiers.

Then, we construct three ensembles:MV Fsingle based
on the 5 Single-View tree classifiers (3rd column in Table
VI), MV F (31) based on the 31 constructed classifiers (4th
column in Table VI) andMV F (5) is constructed by removing
similar classifiers from the forestMV F (31) and keeping
only the 5 most diverse classifiers using kappa agreement
measure. The results show thatMV Fsingle outperforms the
best Single-View tree classifier and shows better performance
than MV F (31). In addition, the top 5 diverse classifiers in
MV F (5) are the single-view ones. That is, for digits data
sets multi-view trees are similar to single-view ones.

V. CONCLUSIONS

The objective of this study was to investigate multi-view
ensembles of tree classifiers using different classifier combi-
nation methods. As demonstrated by experiments, Multi-view
learning can improve the accuracy in complex pattern recog-
nition problems with a large number of classes. In addition,
the trees generated by each individual feature set seem to
complement each other by showing part of the discriminating
information. This motivates the use of multiple feature sets
to generate one consolidated tree, through multi-view hier-
archical clustering or k-means clustering. The combination
method based on Dempster-Shafer Evidence Theory does not
only provide the resulting class encoded by a class label but
also provides an estimate of the class memberships of the
samples to be classified (soft label). Therefore, a forest can

Table V
RESULTS OF THE FIVESINGLE-V IEW TREE CLASSIFIERS FOR THE

HANDWRITTEN DIGITS

TCM image-vector orienthisto pca-40 rows-sum cols-sum
DT 95.8±0.47 96.0±0.59 94.9±0.81 94.0±0.65 93.7±0.95
DS 96.2±0.55 96.5±0.54 95.6±0.61 94.5±0.57 94.0±0.97

Table VI
RESULTS OF THE THREEMULTI -V IEW FORESTS FOR THE DIGITS

TCM FCM MV Fsingle MV F (31) MV F (5)
DT MV 96.8±0.44 94.0±0.64 96.8±0.44

DS

MV 97.1±0.45 94.5±0.61 97.1±0.45
Min 97.4±0.53 97.4±0.52 97.4±0.53
Max 97.6±0.54 97.6±0.51 97.6±0.54
Mean 97.6±0.57 95.6±0.63 97.6±0.57
Prod 97.7±0.47 96.5±0.50 97.7±0.47

Best Tree 96.5±0.54 96.6±0.57 96.5±0.54

be constructed not only by majority voting but also by soft
combiners such as minimum, maximum, mean, and product.
Experiments show that these soft combination methods to-
gether with the Dempster-Shafer approach outperform crisp
combination methods such as voting.
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