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Québec, QC, G3J 1X5,

Canada
Email: Patrick.Maupin@drdc-rddc.gc.ca

Abstract— Dissimilarity measures have been widely studied in
the field of probability theory and fuzzy set theory. The purpose
of this paper is to provide an overview of the existing dissimilarity
measures in evidence theory. We base our description on a
geometrical interpretation of evidence theory. We show that
most of the dissimilarity measures are based on inner products,
in some cases degenerated. Experimental results outline some
relationships between existing measures.
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I. INTRODUCTION

We are interested in this paper in surveying the main dissim-
ilarity measures defined so far in the framework of evidence
theory. The aim is to identify the theoretical foundations of
these measures together with their properties. Experimental re-
sults illustrate some relationship between surveyed measures.

The vast body of literature on distances between probability
distributions is of course a great source of inspiration for the
definition of dissimilarities in evidence theory. Among the
reference papers also aimed at studying dissimilarities in the
broad sense, we can cite the works of M. Basseville [1] on
distances and divergences in probability theory and of I. Bloch
who proposed a detailed survey of distances between fuzzy
sets in [2].

In recent years, many works on measuring the distance
between belief functions have emerged. For a long time,
Demspter’s conflict factor has been the only way to quantify
the interaction between belief functions (see for example [3],
[4]). However, this factor may not be appropriate to quantify
the dissimilarity between two belief functions as the conflict
between two equal belief functions is not 0. Several ways for
defining distances in evidence theory have been adopted: In
[5], Perry and Stephanou extend the Kullback-Liebler diver-
gence for probability distributions, Blackman and Popoli [6]
and Ristic and Smets [7] define a distance based on Dempster’s
conflict factor. Other authors propose geometrical (Euclidean)
distances: Fixsen and Mahler [8] define a classification miss-
distance, Jousselme et al. [9] propose a geometric distance
accounting for the interaction between sets, Cuzzolin [10]
defines an Euclidean measure between belief values, Wen
propose to quantify the similarity based as the angle between
two mass vectors [11].

Two main needs may be identified regarding the use of
dissimilarity measures between belief functions: (1) for algo-
rithms evaluation or optimization, for example in classification
algorithms [8], [9], or in belief functions approximation algo-
rithms [10], [12]–[14], or for combination rules parameters
estimation [15]–[17], (2) as a definition of agreement between
sources of information, for example in clustering techniques
[18], [19], or as a basis for discounting factors (for instance
[11], [20]–[24]. In algorithms for evaluation or optimization,
the distance is computed to a reference belief function Belr,
while in the definition of agreement between sources of
information, no such reference exists. Depending on the use,
some formal properties are required while some other are
superfluous. Our position is that none of the dissimilarity
measures may be better than an another in the absolute, but
rather that their choice should be directed by the practical use.

In Section II, we review some basics of evidence theory with
an emphasis on the geometrical interpretation in Section II-B.
The properties of similarities and dissimilarities are detailed
in Section II-C. A classification of the distances is proposed
in Section III based on different inner-products between belief
functions. It is shown that most of the existing quantities can
fit in this general formulation. We also mention other works of
interest. A comparison of distances is proposed in Section IV
through the use of correlation coefficients between distance
functions, and Section V concludes on future works to be
developed in upcoming papers.

II. BACKGROUND

A. Basics on evidence theory

We denote by X the a frame of discernment containing N
distinct objects xi, i = 1, · · · , N , and by x any element of X .
2X is the power set of X . We denote by F the set of all the
focal elements of a Basic Probability Assignment (BPA) m
and by C, the core of m (i. e. the union of the focal elements
according to Shafer’s definition [25]). A body of evidence is
the couple (m,F). Bel, Pl and q are the belief, plausibility
and commonality of A respectively and since they are in one-
to-one correspondence, they will be used interchangeably. The
pignistic probability [26] is defined for all A of X by:

BetPm(A) =
∑

B⊆X

m(B)
|A ∩B|
|B| (1)



where |A| is the cardinality of set A. In particular, if A is a
singleton {x}, we have BetPm({x}) =

∑
x∈B

m(B)
|B| .

We introduce the intersection index between two sets Int:

Int(A,B) = 1 if A ∩B 6= ∅ and 0 otherwise (2)

and the inclusion index Inc:

Inc(A,B) = 1 if A ⊆ B and 0 otherwise (3)

We note that Inc is not symmetric (Inc(B,A) 6= Inc(A,B)
for all A,B ⊆ X) while Int is. The dual index of Int is 1−Int
which is such that 1 − Int(A,B) = 1 if A ∩ B = ∅ and 1
otherwise. Introducing these indexes allows alternate notations
for the belief, plausibility and commonality functions. For
example, we have

Bel(A) =
∑

B⊆X

m(B)Inc(B, A) (4)

B. A geometrical interpretation of evidence theory
The geometrical interpretation of evidence theory can be

traced back to the work of Ronald Mahler in 1996 [27], where
the author set the bases in the random set theory framework.
This interpretation has also been used in [9] to define a
distance between two belief functions, and further developed
in [10].

Let EX be the 2N -dimensional Cartesian space. The set of
vectors {eA, A ⊆ X} forms a basis of IRN , so that any vector
v of EX can be written v =

∑
A⊆X αAeA, where αA ∈ IR is

the coordinate of v along the dimension eA.
A BPA is a vector m of EX such that

∑
A⊆X αA = 1 with

αA ≥ 0 together with αA = m(A). Using a vector-matrix
notation, the belief, plausibility and commonality functions
are written as:

Bel = Inc′.m Pl = Int.m q = Inc.m (5)

where Inc is the binary matrix whose elements are Inc(A,B),
A in rows and B in columns, Inc′ is the transpose matrix
of Inc and Int is the symmetric matrix whose elements are
Int(A,B).

C. Inner products and dissimilarities
Let assume that an inner product 〈., .〉 exists over EX . Then,

EX together with 〈., .〉 is an inner product space. An inner
product must satisfy the 3 following axioms for all vectors
v1,v2,v3 of EX and all scalars a ∈ IR: (1) Symmetry:
〈v1,v2〉 = 〈v2,v1〉, (2) Linearity in the first argument:
〈av1 + bv2,v3〉 = a〈v1,v3〉 + b〈v2,v3〉, and (3) Positive-
definiteness: 〈v,v〉 ≥ 0 with equality only for v = 0. A
general formulation for an inner product is:

〈v1,v2〉 = v1
′Wv2 (6)

where W is a matrix of weights required to be symmetric and
positive-definite.

A norm in then naturally defined as ‖v‖ =
√
〈v,v〉 and

represents the “length” of v. The angle between v1 and v2 is
then:

θ = arccos
( 〈v1,v2〉
‖v1‖.‖v2‖

)
(7)

The norm can be used to define a distance function on EX by:

d(v1,v2) = ||v1 − v2|| =
√

(v1 − v2)′W(v1 − v2) (8)

The cosine measure is a natural measure of similarity: -
1 means that v1 and v2 are opposite, 1 means that v1

and v2 are the same, 0 means that they are “independent”
and in between values represent intermediate similarity or
dissimilarity. Other formal definition of similarity exist. For
instance, a function s on EX is a similarity if and only if
(1) s is symmetric s(v1,v2) = s(v2,v1) and (2) s(v,v) ≥
s(v,v′). Furthermore if s satisfied s(v,v) = 1, it is normed.
Also, a function d on EX is a dissimilarity if and only if
(1) d is symmetric d(v1,v2) = d(v2,v1), (2) non-negative
d(v1,v2) ≥ 0 and (3) reflexive d(v,v) = 0. Furthermore, if
d satisfies the triangle inequality (4) d(v1,v2) ≤ d(v1,v3)+
d(v2,v3) ∀v3, then d is a semi-distance. If d is definite (5)
d(v1,v2) = 0 ⇔ v1 = v2, then d is a distance. A function in
the form of Equation (8) is a distance if and only if the matrix
W is symmetric and positive-definite. If it is not definite, then
d is a semi-distance.

We distinguish thus two main types of measure of dissim-
ilarity: (1) inner product type, which are like a covariance
between v1 and v2 and (2) distance type, which are like a
variance of the difference between v1 and v2. Figure 2 illus-
trates these two types of measure between belief functions.

III. MAIN DISTANCES IN EVIDENCE THEORY

We will show in this section that in fact, most of the dis-
similarity measures introduced in evidence theory are derived
from inner products. We propose in the following to review
the measures by first identifying the underlying inner products
and discuss then the distances metrics they induce belonging to
the Euclidean metrics family, known as L2. We also present
another family of metrics known as the Minkowski family,
denoted as L∞ and end this section with a divergence measure
and a global conflict index.

A. Inner-products

1) The simplest inner product in EX is:

s⊗E(m1,m2) = m1
′I m2 (9)

where I is the identity matrix. This measure only accounts
for the mass distribution over the focal elements, but not
the interaction between the focal elements themselves.

2) In order to evaluate the performance of identification
algorithms, Fixsen and Mahler proposed in [8] a “classifi-
cation miss-distance metric” called BPAM, for Bayesian
Percent Attribute Miss based on the following inner
product:

s⊗F (m1,m2) = m1
′P m2 (10)

where P is the matrix whose elements are:

P (A,B) =
p(A ∩B)
p(A)p(B)

(11)

with p being a Bayesian a priori distribution on X .



3) In [9], we defined an inner product which accounts for
the similarity between focal elements through the Jaccard
index:

s⊗J (m1,m2) = m1
′Jac m2 (12)

where Jac is the matrix whose elements are Jaccard
indices:

Jac(A,B) =
|A ∩B|
|A ∪B| (13)

This definition should be put together (10) since P (A,B)
can quantify the similarity between focal elements if p is
a uniform distribution, i. e. P (A,B) = N |A∩B|

|A||B| .
4) In [28], Diaz et al. propose to use any similarity measure

between sets S(A,B) for defining the matrix W and they
suggest 17 possible measures. Furthermore, and it is the
main purpose of their work, they propose to modify the
similarity function between focal elements by a function
F so that the resulting similarity measure has some
interesting properties. Their idea is to “reward” small
cardinalities while penalising high cardinalities of focal
sets. The modification of inner products is then defined
by:

s⊗DI(m1,m2) = m1
′F (S, R)m2 (14)

where S is the matrix whose elements quantify similarity
between focal elements.

5) Although not defined explicitly, Cuzzolin in [10] in-
troduced an inner product through a natural Euclidean
distance between belief values. Using the matrix notations
introduced in (5), we have that:

s⊗EB(m1, m2) = m1
′Inc Inc′m2 (15)

Inc Inc′ is also a way to quantify the interaction between
focal elements based on their inclusion rather than on
their similarity.

6) Let us introduce Bet a matrix whose elements are
Bet(A,B) = |A∩B|

|B| . Then we have that betp = Bet m,
the pignistic distribution over EX , and we can define the
inner product:

s⊗Bet(m1,m2) = m1
′ Bet′Bet m2 (16)

7) The Bhattacharyya coefficient [29] can also define an
inner product if we take the square root of the vectors
mi:

s⊗B(m1,m2) =
√

m1
′I
√

m2 (17)

8) The conflict factor defined by Dempster [30] is probably
the first quantification of the interaction between two
belief functions. It can also be under the form of an inner
product:

d⊗C(m1, m2) = m1
′(1− Int) m2 (18)

where Int is the matrix of intersections between two
subsets of X introduced in Section II-A in Equation (2).

It is easy to show that all the inner products introduced
above are symmetric and linear regarding the first component
(axioms (1) and (2) of an inner product). However, some of
them are degenerate as their matrix W is not positive-definite.

B. Dissimilarities based on inner products

1) Direct use: The most classical case of a direct use of
an inner product is Dempster’s conflict factor d⊗C (Equation
(18)) that has been widely used for quantifying a notion
of dissimilarity or distance between belief functions (see
for example [19]). However in some cases, d⊗C may be not
a suitable measure of dissimilarity as the internal conflict
d⊗C(m,m) is not 0.

In [11], Wen et al. use s⊗E to define a cosine measure which
is obtained by normalising the inner product (9)

sCS = cos θ =
s⊗E(m1,m2)
||m1|| · ||m2|| (19)

This measure defines a similarity between m1 and m2.
2) Through a function f : An extension of the Bhat-

tacharyya distance for probability theory to evidence theory
has been proposed in [7] and modified in [31], as is based on
s⊗B :

dB(m1,m2) =
(
1− s⊗B(m1, m2)

)p
(20)

with p ∈ IR+∗.
Mahler suggests in [27] that a quantity of the form:

dM = − log(〈m, eA〉) (21)

can be used as a basis for information measures on bodies of
evidence. Based on d⊗C , Ristic and Smets [7] define an additive
global dissimilarity measure as:

dR(m1,m2) = − log
(
1− d⊗C(m1,m2)

)
(22)

3) As a basis for Euclidean metrics: Each of the inner
products introduced above potentially defines a distance in EX

of the form of (8) with vectors v satisfying the constraint of
BPAs:

di(m1,m2) =
√

(m1 −m2)′W(m1 −m2) (23)

Among the possible distances, some have already been defined
while others have not. The resulting distance is either a
(weighted) Euclidean distance if W is positive-definite or a
semi-distance if it does not satisfy the separability property.
Moreover, not all the distances defined this way are appro-
priate for quantifying the dissimilarity between two belief
functions. Indeed, the simplest Euclidean distance (denoted
by dE hereafter) between BPAs (W = I, in item 1) is not
fully appropriate since it does not account for the interaction
between focal elements of m1 and m2. Indeed, for instance
m1({1, 2, 3}) = 0.8, m1({2, 3}) = 0.2 and m2({1, 2, 3, 4}) =
1 are very far from each other according to dI , while intuitively
they are not. The cosine measure of Wen et al. (19) can be
questioned for the same reasons. The measure dE has been
used in [32] and in [7] in an association algorithm.1

A more intuitive definition requires that the distance ac-
counts for the dissimilarity between (1) the sets of focal
elements F1 and F2 and (2) the distribution of the masses

1We assume that the authors of [7] referred to Equation (9) instead of their
expression (34) which is always equal to 1, as noticed in [31].



TABLE I
INNER PRODUCTS m1

′Wm2 AND ASSOCIATED DISTANCESp
(m1 −m2)′W(m1 −m2).

W

Euclidean m s⊗E I dE

Euclidean Bel s⊗EB Inc Inc′ dEB

Conjunctive d⊗C (1− Int) -
Jaccard s⊗J Jac dJ

Fixsen and Malher s⊗F P dF

Pignistic s⊗Bet Bet′ Bet dBet

Diaz et al. s⊗Di F (S, R) dDi

Bhattachayra coefficient s⊗B I -

among them m1 and m2. This is the case for the distances
proposed in [8]–[10], [28].

Another way to compare belief functions is through their
betting ability: Two belief functions are close if their betting
functions are close, i. e. if their pignistic transformations are
close. Then, any distance between probability distributions can
be used. The most natural one is the L2 measure proposed in
[17] to measure the distance between a belief function and
an indicator vector. The distance is based on s⊗Bet(m1,m2),
which also accounts for the similarity between focal elements.
Table I summarises the distances built upon inner products.

A function of dJ is proposed in [23] as a measure of
coherence between belief functions:

sC(m1,m2) =
1
2
[cos(πdJ) + 1] (24)

In [6], Blackman and Popoli proposed a distance based the
internal and external conflict of two belief functions:

dBP (m1, m2) = ||m1||C + ||m2||C − d⊗C(m1,m2) (25)

where ||m|| is the square norm of m.

C. Chebyshev L∞

In [12], with the aim of assessing the quality of Bayesian ap-
proximation algorithms of belief functions, Tessem proposed
three error measures between two belief functions based on
the Minkowski family, say L∞ of Chebyshev. One measure
between pignistic probabilities:

dT (m1, m2) = max
A⊆X

{|BetP1(A)− BetP2(A)|} (26)

The equivalent measures between belief values and between
plausibilities of singletons are also defined in [12]. In [33],
Cuzzolin discusses the problem of consistent approximations
of belief function based on Lp measures between belief
functions.

D. Divergence types

Arguing that some distances measure “the difference be-
tween in the amount of information available when they are
considered separately and when they are combined”, Perry
and Stephanou proposed in [5] an extension of the symmetric

version of Kullback-Liebler divergence for probability distri-
butions based on the fact that the updating rule is Dempster’s
combination rule rather than Bayes’ rule:

dD(m1,m2) = (|F1 ∪ F2| − |F1 ∩ F2|) + . . .∑

A∈F1∪F2

m1(A)m2(A)(1− (m1 ⊕m2)(A)) (27)

where Fi is the set of focal elements of mi and ⊕ is
Dempster’s rule of combination.

E. Two-dimensional measures

In [34], Liu defines a two-dimensional measure to better
quantify the conflict between belief functions.

IndL =
(
d⊗C(m1,m2); dT (m1,m2)

)
(28)

As we will see in Section IV, many measures of this type can
be built based for example on correlation coefficient between
measures.

IV. EXPERIMENTAL COMPARISON

We follow the technique described in [35] for analysing
the semantic similarities between distances measures between
belief functions. A number Ns of belief functions is randomly
generated {Beln}Ns

n=1 (as described by Algorithm 1). The

Input: X: Frame of discernment;
Nmax: Maximum number of focal elements

Output: Bel: Belief function (under the form of a BPA,
m)

Generate the power set of X → P (X);
Generate a random permutation of P (X) → R(X);
Generate a integer between 1 and Nmax → k;
foreach First k elements of R(X) do

Generate a value within [0, 1] → mk;
end
Normalize the vector m = [m1 . . .mk] → m′;
m(Ak) = mk;
Algorithm 1: Random generation of a belief function

distances previously introduced in Section III are then com-
puted for each pair (mr,mn), where mr is a unique belief
function of reference also randomly generated.

Figures 1 and 2 show the results of simulation for X =
{1, 2, 3, 4, 5, 6, 7, 8}, Nmax = 5, Ns = 100 and |D| = 13.
In dF , the prior probability distribution has been assumed
uniform over X so that P (A,B) = N |A∩B|

|A|.|B| . In dDI , F has
been chosen as in [28]. Although in the original paper [5], the
authors of dD restricted the mi to be simple support functions,
we removed this restriction in our simulations. Figure 1 shows
the scatter plots for each pair (di(mr, mn), dj(mr,mn)),
i, j ∈ D. We observe for instance that dJ and dR are strongly
correlated, in accordance to their respective definitions. On the
contrary, dD and dT are very little correlated and could have
been chosen for a two-dimensional measure as an alternative
of Liu’s measure [34] (see Equation (28)). The boxes on



Fig. 1. Scatter plots based on replications obtained using Algorithm 1.

TABLE II
STATISTICS CALCULATED ON 100 REPLICATIONS GENERATED BY ALGORITHM 1.

Statistic dB dC dD dDI dE dEB dF dJ dR dT sB sSH sCS

Minimum 0,480 0 6,578 0,250 0,389 1,459 0,128 0,252 0 0,224 0,340 0,284 0
Maximum 1 0,549 13,089 0,667 0,762 5,081 0,553 0,643 0,346 0,721 0,853 0,851 0,354
Mean 0,952 0,241 10,302 0,464 0,514 2,952 0,287 0,444 0,125 0,428 0,569 0,586 0,025
Standard Deviation 0,132 0,120 1,603 0,075 0,067 0,498 0,071 0,069 0,071 0,100 0,108 0,105 0,077
Skewness -2,620 -0,008 -0,340 0,252 1,326 0,293 0,415 0,285 0,341 0,265 0,351 -0,398 3,180
Kurtosis 5,332 -0,688 -0,641 0,484 2,383 4,172 1,322 0,516 -0,272 -0,092 -0,241 0,398 9,276

the diagonal of the scatter plot show the distributions of the
measures, and table II completes the statistics.

In Figure 2, we built a dendogram (additive tree) computed
on a Pearson correlation coefficient matrix between 100 repli-
cations of Algorithm 1, whose elements are:

c(di, dj) =

∑N
n=1(d

n
i − d̄i)(dn

j − d̄j)√∑N
n=1(d

n
i − d̄i)2

√∑N
n=1(d

n
j − d̄j)2

(29)

with d̄i = 1
N

∑N
n=1 di. If c(di, dj) = 0, the two distances are

uncorrelated while the distances are all the more correlated
than c(di, dj) is close to 1 (or -1).

We distinguish four (4) groups of measures: (I) Measures
involving autovariance and W is a similarity matrix, (II)
measures involving covariance only and W is a dissimilarity
matrix, (III) measures involving covariance and the identity

matrix and (IV) measures involving covariance and W is a
similarity matrix. It is interesting to notice that dT belongs to
Group (I) while it is a priori a L∞ measure and not a L2. A
deeper analysis of group (IV) is required to explain the non-
trivial relationships between the measures of this group and
justify our classification.

V. CONCLUSIONS

In this paper we have outlined the existence of a formal
link between the existing distances (either dissimilarities and
similarities) defined in the framework of belief functions and
the broad domain of inner products. Experimental comparisons
also showed that the surveyed measures could fit into four
categories. These categories can be related to general proper-
ties such as the type of weighting matrix used, and whether
covariances or variances terms are used for the definition



Fig. 2. Additive tree computed on a Pearson correlation matrix between
replications based on Algorithm 1.

of the various measures. Future works will include (1) add
other reference belief functions in the experimentation such
as vacuous belief function and categorical belief functions, (2)
use real data for the experimental comparison, and (3) detail
furthermore the formal properties of the surveyed measures.
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