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Abstract—This paper proposes an approach for a generic
implementation of fusion rules of evidence. This approach is
based on a common definition of the rules by means ofreferee
functions, which are decisional arbitrament conditionally to basic
decisions provided by the several sources of information. Two
generic processes are proposed for computing the fusion rule:
a sampling method and a deterministic method based on an
adaptive reduction of the set of focal elements. The purpose of
these approaches is to avoid the combinatorics which are inherent
to the definition of fusion rules of evidences. The proposal of
a generic implementation of the fusion rules, combined with
combinatorics reduction policy, makes possible the construction
of several rules on the basis of a simple algorithmic extension
of the generic implementation. This extension is done by means
of the referee function only. Incidentally, it is a versatile and
intuitive way for defining rules. This approach is implemented
for various well known evidence rules, as well as new rules.
Keywords: Evidence, Referee Function, Sampling, Sum-
marization, Dempster-Shafer rule, PCR6.

NOTATIONS

• I[boolean] is defined byI[true] = 1 and I[false] = 0 .
Typically, I[x = y] = 1 whenx = y, and= 0 whenx 6= y,

• Let be given a frame of discernmentΘ. Then, the structureGΘ

denotes anydistributive latticeor Boolean algebragenerated
by Θ and containing∅ .

• x1:n is an abbreviation for the sequencex1, · · · , xn ,
• max{x1, · · · , xn}, or max{x1:n} , is the maximal value of the

sequencex1:n . Similar notations are used formin ,
• maxx∈X{f(x)}, ormax{f(x) / x ∈ X}, is the maximal value

of f(x) whenx ∈ X . Similar notations are used formin .

I. I NTRODUCTION

Evidence theory [1], [2] has often been promoted as an alterna-
tive approach for fusing informations, when the hypothesesfor
a Bayesian approach cannot be precisely stated. While many
academic studies have been accomplished, most industrial
applications of data fusion still remain based on a probabilistic
modeling and fusion of the information. The great success of
the Bayesian approach could be explained by different reasons.
For example, the logical interpretation of the Bayesian rules
seems clear for most users; although it is known that the logic
behinds the Bayesian inference is much more complex [3],
[4]. Another point is that probabilistic computations are now
tractable, even for reasonably complex problems. Then, even
if evidences allow a more general and subtle manipulation of

the information for some case of use, the Bayesian approach
still remains the method of choice for most applications.

Actually, the interpretation of the evidence fusion rules are
rather difficult, when conflicts are notably involved. In the
recent literature, there has been a large amount of work
devoted to the definition of new fusion rules [6]–[14] , in order
to handle the conflict efficiently. The choice for a rule is often
dependent of the applications and there is not a systematic
approach for this task. Somehow, it appears also that this
choice of a rule imply the choice of decision paradigm in order
to handle the conflict. Facing such variety of rule, it appears
that there is a need for tools as well as common frameworks,
in order to evaluate and compare these various rules in regards
to the applications. This paper will focus on the algorithmic
side of this issue: how to build a generic implementation of
the fusion rule, which allows an implementation of the rules
by means of a quite interpretable extension of the generic
form, and which is reasonably efficient in regards to the
combinatorics? Three keywords are thus the guideline of this
work, i.e generic, efficient and interpretable.

Our approach is based on a common definition of the rules
by means ofreferee functions, which are decisional arbitra-
ment conditionally to basic decisions provided by the sev-
eral sources of information. Based on this framework, two
generic processes are proposed for computing the fusion rule:
a sampling method [5] and a summarization method [15]–
[18], which provides an adaptive reduction of the set of focal
elements. The purpose of these approaches is to avoid the
combinatorics which are inherent to the definition of fusion
rules of evidences. These generic implementations make pos-
sible the construction of several rules on the basis of an
algorithmic extension, limited to the implementation of the
referee function.

Section II introduces the notion of referee function and its
application to the definition of fusion rules. Section III defines
the referee functions for two known rules. In section IV,
the generic implementations are defined on the basis of the
referee functions. Section V defines a new fusion rule as an
illustration of this generic implementation. Section VI makes
some numerical comparisons. Section VII concludes.



II. REFEREE FUNCTIONS

Let Θ be a set of propositions, on which the information
is represented. LetGΘ be a distributive lattice or a Boolean
algebra generated byΘ and containing∅ .

A. Referee function

a) Definition: A referee function overGΘ for s sources
of information and with contextγ is a mappingX,Y1:s 7→
F (X|Y1:s; γ) defined on propositionsX,Y1:s ∈ GΘ , which
satisfies for anyX,Y1:s ∈ GΘ :

F (X|Y1:s; γ) ≥ 0 and
∑

X∈GΘ

F (X|Y1:s; γ) = 1 ,

A referee function fors sources of information is also called
a s-ary referee function. The quantityF (X|Y1:s; γ) is called
a conditional arbitramentbetweenY1:s in favor of X. Notice
thatX is not necessary one of the propositionsY1:s ; typically,
it could be a combination of them. The caseX = ∅ is called
the rejection case.

b) Fusion rule: Let be givens basic belief assignments
(bba)m1:s and as-ary referee functionF with contextm1:s .
Then, the fused bbam1 ⊕· · ·⊕ms[F ]

∆
= ⊕[m1:s|F ] based on

the refereeF is constructed as follows:

⊕[m1:s|F ](X) =
I[X 6= ∅]

1 − z

∑

Y1:s∈GΘ

F (X|Y1:s; m1:s)
s

∏

i=1

mi(Yi) ,

wherez =
∑

Y1:s∈GΘ

F (∅|Y1:s; m1:s)

s
∏

i=1

mi(Yi) ,

I[X 6= ∅] = 1 if X 6= ∅, andI[X 6= ∅] = 0 if X = ∅.
(1)

The valuez is called therejection rate.
c) Examples:Refer to section III and V.

B. Properties

d) Bba status:The function⊕[m1:s|F ] defined onGΘ

is actually a basic belief assignment.

Proof is done in [20].

III. E XAMPLES OF REFEREE FUNCTIONS

A. Dempster-shafer rule

e) Classical definition:Let be givens sources of in-
formation characterized by their bbasm1:s. The fused bba
mDST obtained fromm1:s by means ofDempster-Shaferfusion
rule [1], [2] is defined by:











mDST(∅) = 0 ,

mDST(X) =
m∧(X)

1 − m∧(∅)
for any X ∈ GΘ \ {∅} ,

wherem∧(·) corresponds to the conjunctive consensus:

m∧(X) ,
∑

Y1∩···∩Ys=X

Y1,··· ,Ys∈GΘ

s
∏

i=1

mi(Yi) .

f) Definition by referee function:The definition of a
referee function for Dempster-Shafer is immediate:

mDST = ⊕[m1:s|FDST] ,

whereFDST(X|Y1:s;m1:s) = I

[

X =

s
⋂

k=1

Yk

]

.

B. PCR6 rule

The proportional conflic redistribution rules (PCRn) have
been introduced By Dezert and Smarandache [12]. The rule
PCR6 has been proposed by Martin and Osswald in [10] .

g) Classical definition:Let be givens sources of infor-
mation characterized by their bbasm1:s. The fused bbamPCR6

obtained fromm1:s by means of the PCR6 rule is defined by:

mPCR6(∅) = 0 ,

and, for anyX ∈ GΘ \ {∅} , by:

mPCR6(X) = m∧(X) +

s
∑

i=1

mi(X)2×

∑

⋂s−1
k=1 Yσi(k)∩X=∅

Yσi(1)
,··· ,Yσi(s−1)∈GΘ















s−1
∏

j=1

mσi(j)(Yσi(j))

mi(X) +
s−1
∑

j=1

mσi(j)(Yσi(j))















, (2)

wherem∧(·) corresponds to the conjunctive consensus:

m∧(X) ,
∑

Y1∩···∩Ys=X

Y1,··· ,Ys∈GΘ

s
∏

i=1

mi(Yi) ,

and the functionσi counts from1 to s avoiding i :

σi(j) = j × I[j < i] + (j + 1) × I[j ≥ i] .

N.B. If the denominator in (2) is zero, then the fraction is
discarded.

h) Definition by referee function:Definition 2 could be
reformulated into:

mPCR6(X) = m∧(X)

+
s

∑

i=1

∑

⋂s
k=1 Yk=∅

Y1,··· ,Ys∈GΘ













I[X = Yi] mi(Yi)

s
∏

j=1

mj(Yj)

s
∑

j=1

mj(Yj)













,

and then:

mPCR6(X) = m∧(X)

+
∑

⋂s
k=1 Yk=∅

Y1,··· ,Ys∈GΘ

s
∏

i=1

mi(Yi)

s
∑

j=1

I[X = Yj ] mj(Yj)

s
∑

j=1

mj(Yj)

.
(3)



At last, it is derived a formulation of PCR6 by means of a
referee function:

mPCR6 = ⊕[m1:s|FPCR6] ,

where the referee functionFPCR6 is defined by:

FPCR6(X|Y1:s;m1:s) = I

[

X =

s
⋂

k=1

Yk 6= ∅

]

+ I

[

s
⋂

k=1

Yk = ∅

]

s
∑

j=1

I[X = Yj ] mj(Yj)

s
∑

j=1

mj(Yj)

.

(4)

C. Any rule?

Is it possible to construct a referee functions for any existing
fusion rule?

Actually, the answer to this question is ambiguous. If it is
authorized thatF depends onm1:s without restriction, then
the theoretical answer is trivially yes.

i) Property: Let be given the fusion rulem1⊕· · ·⊕ms ,
applying on the bbasm1:s. Define the referee functionF by:

F (X|Y1:s;m1:s) = m1 ⊕ · · · ⊕ ms(X) ,

for any X,Y1:s ∈ GΘ . ThenF is actually a referee function
and⊕[m1:s|F ] = m1 ⊕ · · · ⊕ ms .

Proof is immediate.

Of course, this result is useless in practice, since such referee
function is inefficient. It is inefficient because it does not
provide an intuitive interpretation of the rule, and is as difficult
to compute as the fusion rule. As a conclusion, referee
functions have to be considered together with their efficiency.

On the contrary, the computations of the referee function for
Dempster-Shafer or for PCR6 are immediate. The algorithms
computing these Referee functions –under the form of discrete
probabilities– are efficient, as illustrated subsequently.

j) Algorithm computingFDST:

1) Return{(
⋂s

k=1 Yk, 1)} .

In other words,FDST produces
⋂s

k=1 Yk with weight 1.

k) Algorithm computingFPCR6:

1) ComputeX =
⋂s

k=1 Yk

2) If X 6= ∅ , then return{(X, 1)}
3) Otherwise:

a) SetPi = mi(Yi)
∑

s
j=1 mj(Yj)

for any i ∈ [[1, s]] ,

b) Return{(Yi, Pi)/i ∈ [[1, s]]} .

In other words,FPCR6 distinguishes two cases:

• Consensus:
⋂s

k=1 Yk 6= ∅. Then, produces the consensus
⋂s

k=1 Yk with weight 1,

• Non consensus:
⋂s

k=1 Yk = ∅. Then, produces the entries

Yi with weight mi(Yi)/
(

∑s
j=1 mj(Yj)

)

.

IV. GENERIC IMPLEMENTATIONS

The generic implementations proposed here rely on a com-
mon implementation of the whole fusion process except of the
Referee function. In such frameworks, the implementation of
a new fusion rule is just done by extending the generic code
with an encoding of the specific referee function. Of course,
some requirement are made for encoding the referee function.

A. Encoding requirement for the referee function

The generic implementations make use of theabstract
processComputeReferee[F ] . This process takes as entries
Y1:s ∈ GΘ and bbasm1:s . It produces the discrete probability
distribution:
{

(X,F (X|Y1:s;m1:s))
/

X ∈ GΘ andF (X|Y1:s;m1:s) > 0
}

.

The processComputeReferee[F ] is abstract, which means
that it is not encoded within the generic implementation. Itis
encoded when the related rule is actually implemented.

B. Generic sampling process for the fusion rule

The generic sampling process is described subsequently. It
produces an approximation of the fused bba by means of a
cloud of particles, which are elements ofGΘ. Notice that our
approach is basic, at this time. It does not try to optimize
the efficiency of the particle cloud, in regards to the frame
structure.

Reiterate, until all samples are generated:

1) For eachi ∈ [[1, s]] , generatesYi ∈ GΘ according to the
basic belief assignmentmi, considered as a probabilistic
distribution over the setGΘ , If the bba is already
approximated by a particle cloud, just generate a particle
from the particle cloud,

2) Compute the discrete probability distribution:
{(X1, w1), . . . , (Xk, wk)} =

ComputeReferee[F ] (Y1:s,m1:s) ,
3) GenerateX ∈ GΘ by sampling from the discrete

probability distribution{(X1, w1), . . . , (Xk, wk)} .
4) In the caseX = ∅, reject the sample. Otherwise, keep

the sample.

The performance of the sampling algorithm is at least depen-
dent of two factors. First at all, a fast implementation of the
arbitrament is necessary. Secondly, low rejection rate is better.
Notice however that the rejection rate is not a true handicap.
Indeed, high rejection rate means that the incident bbas are
not compatible in regard to the fusion rule: these bba should
not be fused. By the way, the ratio of rejected samples will
provide an empirical estimate of the rejection rate of the law.

C. Generic fusion process based on a summarization principle

The principle is to limit the size of the set of focal elements
by reducing this size by a simple summarization process [15]–
[18]. Subsequently, a bbam is represented by the setM
defined by:

M =
{

(X,m(X))
/

X ∈ GΘ andm(X) > 0
}



The generic process for computing the fused bbaMfused is
described as follows:

Compute all combinations of the focal elements, in order to
obtain the fused focal elements and their weights:

1) SetM1 = ∅,
2) For all Y1:s, such thatYi is a focal element ofmi for

any i, repeat:

a) ComputeQ =
∏s

i=1 mi(Yi) ,
b) Compute:

{(X1, w1), . . . , (Xk, wk)} =
ComputeReferee[F ] (Y1:s,m1:s) ,

NB: k may change at each iteration.
c) Set (union with repetition):

M1 = M1 ⊔ {(X1, w1Q), . . . , (Xk, wkQ)}

At this step, the same fused focal element may appear inM
with several weights!
Combine the weights of a same fused focal elements:

3) For any(X,ω) ∈ M , compute:

W (X) =
∑

(X,W )∈M

W ,

4) Set:

M2 = {(X,W (X)) /∃ω, (X,ω) ∈ M } ,

Now, remove the emptyset:

5) If (∅, Z) ∈ M2, then set

M3 =
{

(X,W/(1 − Z))
/

(X,W ) ∈ M2 andX 6= ∅
}

,

Otherwise, set M3=M2.

Summarization; reduce the size ofM3 by repeating the
following process untilsizeof(M3) ≤ sizeMax :

6) Select(X,V ), (Y,W ) ∈ M3 such thatV and W are
the lesser weight within M3.

7) Set:

M3 = (M3 \ {(X,V ), (Y,W )})∪{(X ∪ Y, V + W )} ,

NB: this operation is done in logarithmic time.

Return the result of computation:

8) ReturnMfused = M3 .

This algorithm is of course not exact, but allows a rounded
computation of the fusion rule with reasonable combinatorics,
and without the introduction of information.

The following section gives an example of use of these generic
implementations, by providing an algorithmic construction of
a new fusion rule.

V. A NEW RULE: PCR♯

l) Definition: For anyk ∈ [[1, s]], it is defined:

C[k|s] = {γ ⊂ [[1, s]] /card(γ) = k } ,

the set ofk-combinations of[[1, s]] . Of course, the cardinal of

C[k|s] is

(

s
k

)

.

For convenience, the undefined objectC[s + 1|s] is actually
defined by:

C[s + 1|s] =
{

{∅}
}

,

so as to ensure:

min
γ∈C[s+1|s]







I





⋂

i∈γ

Yi = ∅











= 1

A. Limitations of PCR6

The algorithmic interpretation of PCR6 has shown that
PCR6 distinguishes two cases:

• The entry informations are compatible; then, the conjunc-
tive consensus is decided,

• The entry informations are not compatible; then, a mean
decision is decided, weighted by the relative beliefs of
the entries.

In other words, PCR6 only considers consensus or no-
consensus cases. But for more than2 sources, there are many
cases ofintermediate consensus. By construction, PCR6 is not
capable to manage intermediate consensus. This is a notable
limitation of PCR6.

The new rule PCR♯, which is defined now, extends PCR6 by
considering partial consensus in addition to full consensus and
absence of consensus. This rule is constructed by specifying
first the processComputeReferee[F ]. Then, the referee
function F is deduced.

B. The referee computation

The following referee computation try to reach a maximal
consensus. It first tries the full consensus, then consensusof
s − 1 sources,s − 2 sources, and so on, until a consensus
is finally found. When several consensus withk sources is
possible, the final answer is chosen randomly, proportionally
to the beliefs of the consensus. In the following algorithm,
comments are included preceded by// (java convention).

ComputeReferee[F ] (Y1:s,m1:s)

1) Setstop = false andk = s ,
// k is the size of the consensus, which are searched.
At beginning, it is maximal.

2) For eachγ ∈ C[k|s] , do:
// All possible consensus of sizek is tested.

a) If
⋂

i∈γ Yi 6= ∅ , then setωγ =
∏

i∈γ mi(Yi) and
stop = true ,
// If a consensus of sizek is found to be functional,
then it is no more necessary to diminish the size of
the consensus. This is done by changing the value



of booleanstop.
// Moreover, the functional consensus are
weighted by their beliefs.

b) Otherwise setωγ = 0 ,
// Non-functional consensus are weighted zero.

3) If stop = false , then setk = k − 1 and go back to 2 ,
// If no functional consensus of sizek has been found,
then it is necessary to test smaller sized consensus. The
process is thus repeated for sizek − 1.

4) Compute for anyγ ∈ C[k|s]:

Pγ =
ωγ

∑

γ∈C[k|s] ωγ

,

// Build the normalized probabilistic density related to
the consensus belief.

5) Return the discrete probabilistic distribution:

{(γ, Pγ) /γ ∈ C[k|s] andPγ > 0}

// This distribution depicts the final choice of a func-
tional consensus. Here, the decision is random and
proportional to the consensus belief.

C. Referee function

Historically, PCR♯ has been defined by means of an al-
gorithm, not by means of a formal definition of the referee
function. It is however possible to give a formal definition of
the referee function which is equivalent to the algorithm:

FPCR♯(X|Y1:s; m1:s) =
s

∑

k=1

min
γ∈C[k+1|s]

{

I

[

⋂

i∈γ

Yi = ∅

]}

× min































max
γ∈C[k|s]

{

I

[

⋂

i∈γ

Yi 6= ∅

]}

,

∑

γ∈C[k|s]

I

[

X =
⋂

i∈γ

Yi 6= ∅

]

∏

i∈γ

mi(Yi)

∑

γ∈C[k|s]

I

[

⋂

i∈γ

Yi 6= ∅

]

∏

i∈γ

mi(Yi)































.

(5)

Proof is done in [20].

VI. N UMERICAL EXAMPLES

The computations are accomplished by means of a generic
implementation in Java language of the referee functions,
referee-based fusion engine, and logical framework (lattices).
This implementation will be made available at the address:

http://refereefunction.fredericdambreville.com

This implementation is composed of three classes:
• A class, and affiliated classes, implementing the logical

framework. The construction is generic and allows the
encoding of many lattice structures.

• A generic class, and affiliated classes, implementing
the belief assignment and related processes, as well as
generic referee-based fusion methods. The entire class is
parametered by logical framework class variables, while
the generic fusion methods are parametered by referee
function classes.

• A generic class, and affiliated classes, implementing the
referee functions for various rules.

During the tests, a powerset is used as logical framework:

GΘ = {∅, {a}, {b}, {c}, {b, c}, {c, a}, {a, b}, {a, b, c}} .

A. Monte-Carlo convergence

The bbasm1 andm2 are defined by:
• m1({a, b, c}) = 0.1, m1({a, b}) = 0.2, m1({b, c}) = 0.3,

m1({a, c}) = 0.4
• m2({a, b, c}) = 0.1, m2({a, b}) = 0.4, m2({b, c}) = 0.3,

m2({a, c}) = 0.2

These bbas are fused by means of DST, resulting inm =
mDST:

m({a, b, c}) = 0.01, m({a, b}) = 0.14, m({b, c}) = 0.15,
m({a, c}) = 0.14, m({a}) = 0.2, m({b}) = 0.18, m({c}) = 0.18.

The following table compares the rounded deviations of the
empirical m = mDST , computed by means of sample clouds
of different cloud sizesN .

log10 N 1 2 3 4 5
m({a, b, c}) 3E − 2 1E − 2 3E − 3 1E − 3 3E − 4
m({a, b}) 1E − 1 3E − 2 1E − 2 3E − 3 1E − 3
m({b, c}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3
m({a, c}) 1E − 1 3E − 2 1E − 2 3E − 3 1E − 3
m({a}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3
m({b}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3
m({c}) 1E − 1 4E − 2 1E − 2 4E − 3 1E − 3

Actually, this table is compliant with the theoretical result:

σ(m(X)) =
√

m(X)·(1−m(x))
N

.

B. Comparative tests

m) Example 1:It is assumed3 bbasm1:3 on GΘ by:

m1({a, b}) = m2({a, c}) = m3({c}) = 1 .

The bbasm1 and m3 are incompatible. However,m2 is
compatible with bothm1 andm3 , which implies that a partial
consensus is possible betweenm1 andm2 or betweenm2 and
m3 . As a consequence, PCR♯ should provide better answers
by allowing partial combinations of the bbas. The fusion of
the3 bbas are computed respectively by means of DST, PCR6
and PCR♯ , and the results confirm the intuition:

• zDST = 1 andmDST is undefined,
• mPCR6({a, b}) = mPCR6({a, c}) = mPCR6({c}) = 1

3
,

• mPCR♯({a}) = mPCR♯({c}) = 1
2

derived from the con-
sensus {a, b} ∩ {a, c} , {a, c} ∩ {c} and their beliefs
m1({a, b})m2({a, c}) , m2({a, c})m3({c}).

n) Example 2:It is assumed3 bbasm1:3 on GΘ by:
• m1({a, b}) = 0.4 , m1({a}) = 0.6
• m2({a, c}) = 0.7 , m2({a}) = 0.3
• m3({a, b, c}) = 0.2 , m3({b}) = 0.8

The computation of PCR♯ is done step by step:



Full consensus.Full functional consensus are:

Y1 {a, b} {a, b} {a} {a}
Y2 {a, c} {a} {a, c} {a}
Y3 {a, b, c}{a, b, c}{a, b, c}{a, b, c}

⋂

i Yi {a} {a} {a} {a}
∏

i mi(Yi) 0.056 0.024 0.084 0.036

Partial consensus sized2. The belief ratios for the partial
consensus are simplified as follows:

m1(Y1)m2(Y2)

m1(Y1)m2(Y2) + m3(Y3)m1(Y1)
=

m2(Y2)

m2(Y2) + m3(Y3)

and similar results are obtained forY3, Y1 and Y2, Y3 . Then
the possible partial consensus are:

Y1 {a, b} {a, b} {a} {a}
Y2 {a, c} {a} {a, c} {a}
Y3 {b} {b} {b} {b}

Y1 ∩ Y2 {a} {a} {a} {a}
Y2 ∩ Y3 ∅ ∅ ∅ ∅
Y3 ∩ Y1 {b} {b} ∅ ∅
m2(Y2)

m2(Y2)+m3(Y3)
0.467 0.273 1 1

m3(Y3)
m2(Y2)+m3(Y3)

0.533 0.727 0 0
∏

i mi(Yi) 0.224 0.096 0.336 0.144

1-sized consensus.There is no remaining1-sized consensus.

Belief compilation.The different cases resulted in only two
propositions,i.e. {a} and{b}. By combining the entry beliefs
∏

i mi(Yi) and ratio beliefs, the fused bbam = mPCR♯ is then
deduced:







m({a}) = 0.056 + 0.024 + 0.084 + 0.036 + 0.467 × 0.224
+0.273 × 0.096 + 1 × 0.336 + 1 × 0.144 = 0.811

m({b}) = 0.533 × 0.224 + 0.727 × 0.096 = 0.189

As a conclusion:

mPCR♯({a}) = 0.811 and mPCR♯({b}) = 0.189 .

This result could be compared to DST and PCR6:
• zDST = 0.8 andmDST({a}) = 1,
• mPCR6({a}) = 0.391 , mPCR6({b}) = 0.341 ,

mPCR6({a, b}) = 0.073 , mPCR6({a, c}) = 0.195 ,

DST produces highly conflicting results, since source3
conflicts with the other sources. However, there are some
partial consensus which allow the answer{b} . DST is blind
to these partial consensus. On the other hand, PCR6 is able
to handle hypothesis{b} , but is too much optimistic and,
still, is unable to fuse partial consensus. Consequently, PCR6
is also unable to diagnose the high inconstancy of belief
m3({b}) = 0.8 .

VII. C ONCLUSION

This paper has proposed two generic implementations of fu-
sion rules, based on the concept of referee functions. A referee
function models an arbitrament process conditionally to the
contributions of several independent sources of information.
It has been shown that fusion rules based on the concept of
referee functions have a straightforward sampling-based im-
plementation. Moreover, a rounded deterministic computation
of the fusion is also implemented by using the principle of

summarization, in order to reduce the combinatorics. Owingto
the algorithmic nature of referee functions, it appears that the
conception of new rules of fusion is made easier and intuitive.
Examples of existing fusion rules have been implemented.
Moreover, an example of rule construction has been provided
on the basis of this generic encoding. This work has been
implemented in java language. Some publication of this java
implementation will be made soon.
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