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Abstract— How one may most effectively incorporate soft
evidence into the fusion process has attracted considerable
attention because soft evidence often provides the most critical
information in battlefield and homeland security application
domains. The Dempster-Shafer theoretic framework is a better
candidate to capture the types of models and uncertain rules that
are more typical of soft evidence. In this paper, we propose the
conditional update equation (CUE), a Dempster-Shafer theoretic
strategy for evidence updating that relies on the conditional
approach for evidence fusion. The CUE can handle sources
possessing non-identical scopes and provides a more reasonable
solution when confronted with contradictory information, which
constitute two major concerns related to incorporating soft
evidence into the fusion process. We highlight several intuitively
appealing properties that give further credence to the CUE.
Keywords: Evidence updating, soft information, Dempster-
Shafer theory, non-identical frames, conditional approach.

I. INTRODUCTION

Motivation: In asymmetric threat environments, the ev-
idence possessing the highest value typically comes from
soft sensors, such as COMINT (e.g., communication chatter,
telephone records), HUMINT (e.g., informant and interro-
gation statements, domain expert inputs), and OSINT (e.g.,
open-source intelligence, such as, newspapers, Internet blogs,
databases). Unfortunately, the absence of appropriate models
for the error characteristics and imperfections associated with
soft sources [1] makes it difficult to fuse soft evidence with
the evidence generated from the more conventional physics-
based hard sensors. This has created an enormous burden on
intelligence officers who are forced to sift through and assess
volumes of soft information for decision-making purposes.
The question of how the more ‘qualitative’ information in soft
evidence can be captured and fused with the more ‘quantita-
tive’ information in hard evidence for increased automation of
the decision-making process is attracting considerable atten-
tion from the evidence fusion community [2], [3].

Challenges: Bayesian probabilistic framework has difficulty
in capturing the ‘non-numerical’ models that are more typical
of soft evidence [1]. Probabilistic models’ inability to preserve
the material implications of propositional logic statements that
are represented by uncertain rules [4], [5] constitutes a serious
drawback that limits their utility in capturing soft evidence.

On the other hand, models that are based on the Dempster-
Shafer (DS) belief theoretic framework [6] can capture such
uncertain rules while preserving the material implications of
propositional logic statements that such rules represent, viz.,
reflexivity, transitivity, and contra-positivity [5].

DS theoretic fusion of soft evidence however must account
for sources that may not have the same scope, or frame of
discernment (FoD) in DS theoretic jargon. This is due to
the fact that soft evidence is likely to be generated from
a variety of sources having dissimilar FoDs. For example,
the information contained in a public database of vehicles
belonging to town residents, would have a much larger, but
not completely disjoint, scope than the vehicles that had been
recorded at a checkpoint. This constitutes a major drawback
of the Dempster’s combination rule (DCR), the de facto DS
theoretic evidence fusion strategy. Deconditioning approaches
address this limitation by artificially introducing ambiguities
so that the FoDs are ‘deconditioned’ or ‘expanded’ to be
identical [7], [8]. This requires one to work with an FoD of
unnecessarily high cardinality, an unacceptable situation espe-
cially when large public databases may need to be consulted.

Fusion of hard and soft information can also involve evi-
dence that is highly contradictory. For example, hard evidence
can often be used to narrow down the time of occurrence of
an event. On the other hand, regarding the same event, or
perhaps regarding the underlying environment (e.g., the threat
level), soft evidence spans a much wider time interval. Indeed,
an event time interval provided by soft evidence might even
precede, or even be disjoint with, the event time interval that
hard evidence provides. The DCR tends to produce counter-
intuitive results when it encounters contradictory evidence.

Contributions: The DS theoretic conditional approach in
[9] takes a fundamentally different view: instead of requiring
the FoDs to be ‘expanded,’ it enables a source to update its
knowledge base by ‘sifting’ through the incoming evidence
to take in only what it can discern or is interested in. The
conditional update equation (CUE) for the identical FoDs case
in [10] embraces this point of view. In this paper, we extend
this CUE to accommodate non-identical FoDs.

This paper is organized as follows: Section II provides a re-
view of essential DS theoretic notions; Section III proposes our



new conditional update strategy that can accommodate non-
identical FoDs; Section IV presents several of its interesting
and intuitively very appealing properties; Section V contains
an example; and, the concluding remarks appear in Section VI.

II. PRELIMINARIES

A. Dempster-Shafer (DS) Theory

In DS theory, the total set of mutually exclusive and
exhaustive propositions of interest is referred to as its frame of
discernment (FoD) Θ = {θ1, . . . , θn} [6]. A singleton propo-
sition θi represents the lowest level of discernible information.
Elements in the power set of Θ, 2Θ, form all the propositions
of interest. We use A \ B to denote all singletons in A that
are not in B; A denotes Θ \A.

Definition 1: Consider the FoD Θ and A ⊆ Θ.
(i) The mapping mΘ(�) : 2Θ 7→[0, 1] is a basic belief

assignment (BBA) or mass assignment if mΘ(∅)=0 and∑
A⊆ΘmΘ(A)=1. The BBA is said to be vacuous if the only

proposition receiving a non-zero mass is Θ.
(ii) The belief of A is BlΘ(A)=

∑
B⊆AmΘ(B).

(iii) The plausibility of A is PlΘ(A)=1−BlΘ(A).
DS theory models the notion of ignorance by allowing

the mass assigned to a composite proposition to move into
its constituent singletons. A proposition that possesses non-
zero mass is a focal element. The set of focal elements is
the core FΘ; the triple {Θ,FΘ,mΘ(�)} is the corresponding
body of evidence (BoE). While mΘ(A) measures the support
assigned to proposition A only, the belief represents the total
support that can move into A without any ambiguity; PlΘ(A)
represents the extent to which one finds A plausible. When
focal elements are constituted of singletons only, the BBA,
belief and plausibility all reduce to a probability assignment.

Definition 2 (Dempster’s Combination Rule (DCR)): The
DCR-fused BoE E≡E1⊕E2={Θ,FΘ,mΘ(�)} generated from
the BoEs Ei={Θi,FΘi ,mΘi(�)}, i=1, 2, when Θ≡Θ1=Θ2,
is

mΘ(A) =
∑

C∩D=A

mΘ1(C)mΘ2(D)/(1−K), ∀A ⊆ Θ,

whenever K =
∑

C∩D=∅mΘ1(C)mΘ2(D) 6= 1.
Note that K ∈ [0, 1] is an indication of the conflict between

the evidence provided by the BoEs. Hence, K is referred to
as the conflict between the BoEs being fused. The DCR’s
difficulties in fusing conflicting BoEs are well documented.
The requirement that the two FoDs being fused be identical
constitutes another drawback associated with the DCR.

To fuse evidence generated from non-identical FoDs Θ1 and
Θ2 (so that Θ1 6= Θ2 and Θ1 ∩ Θ2 6= ∅), one can simply
ignore the differences in the FoDs by having each source
allocate zero mass to propositions that are not within its own
FoD and continue applying DCR. So, this approach assumes
that each source can discern Θ1 ∪ Θ2 and ignores the fact
that some propositions are not within its scope of expertise.
The counter-intuitive conclusions this approach may generate
are well documented [7]. In the deconditioning approaches,

each source would artificially introduce ambiguities into its
evidence so that its own FoD is ‘expanded’ to Θ1 ∪Θ2.

B. Conditional Approach to Updating

The conditional approach to fusing evidence ‘conditions’ or
‘updates’ the already available evidence with respect to what
both FoDs can discern [9]. Once the conditioning operation
is performed, each source invokes a strategy to incorporate
its originally cast evidence that does not belong to Θ1 ∩ Θ2.
This approach enables a source to update its own knowledge
base, and exchange information with other sources for the
express purpose of refining its own knowledge, without having
to continually ‘expand’ its FoD.

1) CUE: Identical FoDs Case: The conditional update
equation (CUE) for the identical FoDs case in [10] embraces
this conditional approach. To explain, consider the two BoEs
Ei[k] with Θ≡Θ1=Θ2. The CUE in [10] then yields the update
E1[k + 1]≡E1[k]CE2[k], ∀k≥0, of E1[k] as

BlΘ1(B)[k + 1]

= α[k]BlΘ1(B)[k] +
∑

A⊆Θ2

β(A)[k]BlΘ2(B|A)[k], (1)

where BlΘ2(A) > 0 and the parameters {α[�], β(A)[�]} are
non-negative, β(A)[�] = 0, ∀A 6∈ FΘ2 [�], and

α[k] +
∑

A⊆Θ2

β(A)[k] = 1,∀k ≥ 0. (2)

Henceforth, we will not explicitly identify the index k unless
it is essential. The conditional operation in (1) is implemented
using the Fagin-Halpern (FH) DS theoretic conditionals.

Definition 3: [11] For E={Θ,FΘ,mΘ(�)}, A,B ⊆ Θ with
BlΘ(A) > 0, the conditional belief of B given A is

BlΘ(B|A) = BlΘ(A ∩B)/[BlΘ(A ∩B) + PlΘ(A \B)].

Remarks:
1. Because BlΘ(B|A) = BlΘ(A ∩ B|A), while evaluating

the evidence we have in support of B when our view is
restricted to only A, the FH conditionals consider only those
propositions that both A and B have in common.

2. The FH conditionals give a more appropriate probabilistic
interpretation and a natural transition to Bayesian notions [9],
[11]. Indeed, it is the FH conditional belief and plausibility that
correspond precisely to the inner and outer measures of a non-
measurable event [12]. See [9] for a detailed interpretation.

III. CUE: NON-IDENTICAL FODS CASE

Fig. 1 depicts the non-identical FoDs case where Θ1 6= Θ2

and Θ1 ∩Θ2 6= ∅. Extending the initial work in [9], [13] has
proposed a strategy that enables one to update a BoE with the
‘occurrence’ of a proposition A residing in another BoE having
possibly a different FoD, i.e., the incoming evidence which
may have a non-identical FoD has only one focal element.
Taking inspiration from this work, we now extend the CUE in
(1) to accommodate non-identical FoDs.
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Fig. 1. Updating the BoE E1 = {Θ1,FΘ1 ,mΘ1 (�)} with the evidence of
BoE E2 = {Θ2,FΘ2 ,mΘ2 (�)} when Θ1 6= Θ2 and Θ1 ∩ Θ2 6= ∅. The
terms that contribute towards the update of mΘ1 (B) are also shown.

A. Belief CUE

Definition 4: For the BoEs Ei, the CUE that updates E1
with the evidence in E2 is E1[k+1] ≡ E1CE2, ∀k ≥ 0, where

BlΘ1(B)[k + 1]

= αBlΘ1(B) +
∑

A⊆Θ2

β(A)
2

{
BlΘ2(B|A)

+BlΘ2(DB |A)−BlΘ2(Θ21|A)
}
,

where Θ21 = Θ2 \ Θ1, DB = B ∪ Θ21, and BlΘ2(A) > 0.
The CUE parameters {α, β(A)} are non-negative, β(A) =
0, ∀A /∈ FΘ2 , and

α+
∑

A⊆Θ2

β(A)
2

{
BlΘ2(Θ1|A) + PlΘ2(Θ1|A)

}
= 1.

Remarks:
1. Note that, BlΘ1(∅) = 0 and BlΘ1(Θ1) = 1.
2. The focal elements A ∈ FΘ2 that do not intersect with

Θ1 bears no influence on the CUE (even if β(A) > 0 for
such propositions). Therefore, without loss of generality, we
can assume that β(A) = 0, ∀A ∈ FΘ2 s.t. A ∩Θ1 = ∅.

3. BlΘ1(B) accounts for the evidence that E1 already
has for B ⊆ Θ1; BlΘ2(B|A) accounts for the conditional
evidence that E2 has for propositions in Θ1 ∩ Θ2; the terms
BlΘ2(DB |A)−BlΘ2(Θ21|A) account for conditional evidence
that E2 has for propositions that ‘straddle’ B and Θ21.

4. Θ2 ⊆ Θ1 Case: When Θ2 is contained in Θ1, the belief
CUE in Definition 4 reduces to

BlΘ1(B)[k+1] = αBlΘ1(B)+
∑

A⊆Θ2

β(A)BlΘ2(B|A), (3)

where α+
∑

A⊆Θ2
β(A) = 1 with β(A) = 0, ∀A /∈ FΘ2 . The

strategy in [10] where Θ1 = Θ2 is a further special case.
5. Henceforth, unless otherwise mentioned, we do not

consider the ‘trivial’ parameter values of α = 0 and α = 1.

B. Mass CUE

An equivalent statement of the belief CUE is
Lemma 1: The mass CUE corresponding to the belief CUE

in Definition 4 is

mΘ1(B)[k+1] = αmΘ1(B)+
∑

B⊆A⊆Θ2

β(A)
2

{
mΘ2(B|A)

+
∑

D⊆Θ21∩A

mΘ2(B ∪D|A)
}
.

Proof: We know that

BlΘ1(B) =
∑
C⊆B

mΘ1(C), BlΘ2(B|A) =
∑
C⊆B

mΘ2(C|A),

and

BlΘ2(DB |A) =
∑

D⊆Θ21∩A

mΘ2(D|A)

+
∑
∅6=C⊆B

∑
D⊆Θ21∩A

mΘ2(C ∪D|A),

where we used the fact that mΘ2(B|A) 6= 0 only when B ⊆ A
[9]. Substitute these into the belief CUE and use the fact that
it is true for all B ⊆ Θ1 to establish the claim.

Fig. 1 shows the masses that contribute towards updating
mΘ1(B).

C. Focal Elements

The CUE in Definition 4 and Lemma 1 can generate ‘new’
focal elements that are not necessarily in FΘ1 ∪ FΘ2 .

Lemma 2: For B ∈ FΘ1 [k+1], either (i) B ∈ FΘ1∪FΘ2 ; or
(ii) ∃A ⊆ Θ2 s.t. ∅ 6= B ⊆ A, β(A) > 0, and BlΘ2(B∪D) >
0 for some D ⊆ Θ21 ∩A.

Proof:
(i) It is obvious that B ∈ FΘ1 implies B ∈ FΘ1 [k + 1]. If

B ∈ FΘ2 , mΘ2(B|B) > 0 [9] and hence B ∈ FΘ1 [k + 1].
(ii) Assume B 6∈ FΘ1 ∪FΘ2 . Then B ∈ FΘ1 [k+ 1] requires

that ∃A ⊆ Θ2 s.t. B ⊆ A with β(A) > 0; otherwise, all the
terms in the right-hand side of the mass CUE vanish. With
such an A, suppose BlΘ2(B ∪D) = 0, ∀D ⊆ Θ21 ∩A. Then
BlΘ2(B ∪ D|A) = 0 implying that mΘ2(G|A) = 0, ∀G ⊆
B∪D. This would again render all the terms in the right-hand
side of the mass CUE vanish. So, we must have BlΘ2(B ∪
D) > 0 for some D ⊆ Θ21 ∩A.

D. Selection of Parameters

1) Selection of α: The work in [9], [13] elaborates upon
how α can capture the flexibility of available evidence towards
changes (e.g., when the ‘inertia’ of the available evidence
makes the source reluctant to change). Instead of repeating
these strategies here, we refer the reader to [9], [13].

2) Selection of β(A): Immediately, we see two choices.
Definition 5:
(i) Receptive updating (rCUE): β(A) = KΘ2mΘ2(A),

∀A ∈ FΘ2 , where KΘ2 6= 0 is a constant.
(ii) Cautious updating (cCUE): β(A) = KΘ1mΘ1(A∩Θ1),

∀A ∈ FΘ2 , where KΘ1 6= 0 is a constant.



Remarks:
1. rCUE ‘weighs’ the incoming evidence according to E2’s

support for each focal element. However, the focal elements
contained in Θ21 would not contribute towards the update.

2. cCUE ‘weighs’ the incoming evidence according to E1’s
support for each focal element. So the focal elements of the
updated BoE are restricted to a subset of FΘ1 .

One can also take a more ‘ad hoc’ approach and choose
β(A) to emphasize, to different degrees, E2’s evidence towards
selected propositions. For example, the choice of β(Θ2) = 0
enables E1 to completely disregard E2’s ‘evidence’ towards
complete ignorance.

IV. SOME PROPERTIES OF THE CUE

We now present several interesting and intuitively appealing
properties of the CUE. Their formal proofs are not too difficult;
but they are omitted to contain the length of this paper.

A. Mass Update for Complete Ambiguity

Claim 3: The CUE updates the complete FoD Θ1 as

mΘ1(Θ1)[k+1] = αmΘ1(Θ1)+
∑

Θ1⊆A⊆Θ2

β(A)
2

{
mΘ2(Θ1|A)

+
∑

D⊆Θ21∩A

mΘ2(Θ1 ∪D|A)
}
.

Remarks:
1. For Θ1 = Θ2, Claim 3 reduces to

mΘ1(Θ1)[k + 1] = αmΘ1(Θ1) + β(Θ2)mΘ2(Θ2). (4)

2. For Θ1 6⊆ Θ2, Claim 3 reduces to

mΘ1(Θ1)[k + 1] = αmΘ1(Θ1) < mΘ1(Θ1). (5)

B. Updating a Vacuous BoE with an Arbitrary BoE

Claim 4: Consider the update E1[k + 1] = E1 C E2, where
E1 is vacuous. Then, ∀A ∈ FΘ2 s.t. Θ1∩A 6= ∅ and β(A) > 0,
mΘ1(Θ1 ∩A)[k + 1] > 0.

Remark: So, whenever ∃A ∈ FΘ2 s.t. ∅ 6= Θ1 ∩ A ⊂ Θ1

and β(A) > 0, mΘ1(Θ1)[k + 1] < 1 so that E1[k + 1] is no
longer vacuous, an intuitively very appealing property.

C. Updating an Arbitrary BoE with a Vacuous BoE

Claim 5: Consider the update E1[k + 1] = E1 C E2, where
E2 is vacuous. Then the mass CUE is

mΘ1(B)[k + 1] = αmΘ1(B) +
β(Θ2)

2

{
mΘ2(B|Θ2)

+mΘ2(B ∪Θ21|Θ2)
}
,

where α+
β(Θ2)

2
{BlΘ1(Θ1|Θ2) + PlΘ1(Θ1|Θ2)} = 1.

Remarks:

1. For Θ1 ⊆ Θ2, Claim 5 reduces to

mΘ1(B)[k + 1] =


αmΘ1(B) < mΘ1(B),

for B ⊂ Θ1;
αmΘ1(Θ1) + (1− α) > mΘ1(Θ1),

for B = Θ1.

2. For Θ1 6⊆ Θ2, Claim 5 reduces to

mΘ1(B)[k+ 1] =



αmΘ1(Θ1 ∩Θ2) + (1− α)
> mΘ1(Θ1 ∩Θ2),

for B = Θ1 ∩Θ2;
αmΘ1(B) < mΘ1(B),

for B ⊆ Θ1 \ (Θ1 ∩Θ2).

(6)

3. When E1 and E2 are both vacuous, Remarks 1-2 yield
—for Θ1 ⊆ Θ2: E1[k + 1] remains vacuous;
—for Θ1 6⊆ Θ2: the CUE generates

mΘ1(B)[k + 1] =

{
1− α, for B = Θ1 ∩Θ2;
α, for B = Θ1.

(7)

While the Θ1 ⊆ Θ2 case above certainly does make intuitive
sense, the Θ1 6⊆ Θ2 case calls for a careful examination. To
elaborate, suppose E1 is vacuous with Θ1 = {a, b}. With
Θ2 = {b, c, d, . . .}, |Θ2| >> |Θ1|, suppose E2 is vacuous,
E ′2 has m′2(bcde) = 1.0, and E ′′2 has m′′2(bc) = 1.0. With
cCUE, α = 1 and all the updates E1[k + 1], E ′1[k + 1], and
E ′′1 [k + 1] will remain vacuous. This is what one would get
with ballooning extension methods too [8]. But with rCUE,
α < 1 and all the updates will get {b} as a focal element.
While this may be questionable for E1[k+ 1] and E ′1[k+ 1], it
may in fact be acceptable, even desirable, for E ′′1 [k+1] to have
{b} as a focal element. So, what one deems reasonable may
depend on how the parameters are selected and, in turn, the
application. The strength of the CUE lies in its flexibility to
provide a customized updating scheme via the choice of β(�).
For instance, with β(Θ2) = 0, one can disregard the incoming
BoE’s ‘evidence’ towards complete ignorance; or, one can pick
β(A) = K2m2(A), ∀A ∈ F2, s.t. |A \ (Θ1 ∩ Θ2)| ≤ N , and
β(A) = 0, otherwise. With N = 1, then E ′′1 [k + 1] will have
{b} as a focal element, but E1[k + 1] or E ′1[k + 1] will not.

D. CUE for the Probabilistic Case

Claim 6: When all the focal elements of both E1 and E2
are singletons, the CUE reduces to

PΘ1(B)[k + 1] =

{
αPΘ1(B), for B ∈ Θ1 \Θ2;
αPΘ1(B) + β(B), for B ∈ Θ1 ∩Θ2,

where α+
∑

B∈Θ1∩Θ2

β(B) = 1.

Remarks:
1. For B ∈ Θ1 \Θ2, PΘ1(B)[k + 1] < PΘ1(B).
2. For B ∈ Θ1 ∩ Θ2 (i.e., events that are in common with

both Θ1 and Θ2), PΘ1(B)[k + 1] > PΘ1(B) iff β(B) >
(1 − α)PΘ1(B), i.e., the probability of a common event B



can increase if the corresponding β(B) is not too small. Let
us study the rCUE and cCUE parameter selection strategies:

—rCUE: Here β(B) = (1−α)PΘ2(B|Θ1∩Θ2). This yields
PΘ1(B)[k + 1] > PΘ1(B) iff PΘ2(B|Θ1 ∩Θ2) > PΘ1(B).

—cCUE: Here β(B) = (1−α)PΘ1(B|Θ1∩Θ2). This yields
PΘ1(B)[k + 1] > PΘ1(B) iff PΘ1(B|Θ1 ∩ Θ2) > PΘ1(B),
which is of course trivially true, except when PΘ1(B) = 0
which yields PΘ1(B)[k + 1] = 0.

E. Updating Contradictory BoEs

With Θ1 = Θ2 = {a, b}, consider the two sources

E1 : {mΘ1(a),mΘ1(Θ1)} = {µ, 1− µ};
E2 : {mΘ2(b),mΘ1(Θ1)} = {ν, 1− ν}, ν < µ < 1. (8)

Then the rCUE-update E1 C E2 yields the ‘odds ratio’

mΘ1(a)[k + 1]
mΘ1(b)[k + 1]

=
αµ

β(b) + β(a, b) ν
=

α

1− α
µ

ν (2− ν)
→ α/(1− α), as ν → 1 with ν < µ < 1. (9)

Here α+ β(b) + β(a, b) = 1. In contrast, the DCR-generated
odds ratio tends to ∞ (irrespective of how close to one ν is).
Clearly, the CUE behaves more reasonably in this scenario.

V. AN EXAMPLE

The selection of the most appropriate update strategy and
its parameters is a non-trivial application dependent task. We
illustrate the use of variants of CUE and give insights into
parameter selection via the following hypothetical scenario.

A. Set-Up

A remote military storage facility, protected by an au-
tomated surveillance system, uses a suite of hard sensors
SH and soft evidence SS in the form of ground intelli-
gence for identification of ‘objects’ crossing its perimeter.
The objects crossing the perimeter are classified into one
of the four classes, S=Soldier, F=FighterJet, T=Tank,
and O=Other. Each class, except O which accounts for
an object that cannot be further sub-classified (e.g., an
animal), may further be sub-classified as F=Friendly or
E=Enemy. So the exhaustive set of objects of interest is
ΘObj={SF , SE︸ ︷︷ ︸

≡S

, FF , FE︸ ︷︷ ︸
≡F

, TF , TE︸ ︷︷ ︸
≡T

, O}.

1) Hard Evidence: Each sensor belonging to SH can iden-
tify ground objects, but cannot differentiate between friendly
and enemy forces. So, we capture the BoE associated with
the sensor suite SH via EH={ΘH ,FΘH

,mΘH
(�)}, where

ΘH={S, T,O}.
2) Soft Evidence: The prevailing threat level (TL) in the

proximity of the security zone, military domain expert opinion,
etc., constitute ground intelligence providing soft evidence on
how one may view, and further refine, the evidence that hard
sensors provide. We capture the BoE associated with soft
evidence via ES={ΘS ,FΘS

,mΘS
(�)}, where ΘS={S, T, F}.

We ‘partition’ the time axis into regions so that the dis-
position of the evidence being received within each region is
unchanged. For our simulations, we use 4 such regions, (a),

(b), (c), and (d). For convenience of identifying the appropriate
BoE, we will utilize an index k to denote the the corresponding
region (i.e., (a), (b), (c), or (d)); k+1 and k−1 denote the next
and previous regions, respectively. For example, EH [k = b]
is the hard evidence generated within region (b); EH [k − 1]
then identifies the hard evidence generated in region (a). The
‘initial’ region where no evidence has yet been received is
modeled via the DS theoretic vacuous mass assignment. The
evidence being generated by SH and SS within each distinct
region is modeled via DS theoretic mass assignments and
shown in Table I.

B. Fusion

In our simulations, we look at three schemes that a
fusion center may employ to update its knowledge base.
Let us denote the BoE generated at this fusion center via
E∗[k]={Θ∗,FΘ∗ [k],mΘ∗(�)[k]}, where Θ∗ is the FoD being
retained at the fusion center. We will assume that Θ∗ = ΘH .

1) Temporal Updating of Hard Evidence: Here, E∗[k +
1]=E∗[k] C EH [k + 1]. Only the hard evidence is used; no
soft evidence is incorporated. Since the fusion center has no
evidence to begin with, we used rCUE with a low α (=0.3
in simulations). Fig 2 shows the fusion results. See how the
support towards a Tank T is increased with temporal fusion.
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Fig. 2. Fusion results corresponding to temporal updating of hard evidence.
rCUE is used with α = 0.3 allowing a higher flexibility to change.

2) Modal Updating of Hard Evidence (with Soft Evidence):
Here, E∗[k]=EH [k] C ES [k]. The hard evidence in a given
region is simply updated by the soft evidence available within
the same region; no temporal updating is incorporated. With
no additional information regarding the credibility of the soft
source, we used cCUE in this simulation. Of course, when a
hard sensor fails or in the initial stages of evidence collection
(e.g., in region (a)), rCUE may be more suitable. See Fig 3
for fusion results. Notice how the fusion center’s supports
get more refined with the incorporation of soft evidence. For
instance, see region (c): although the hard evidence assigns
more mass to T and (S, T ) (simply because it cannot differ-
entiate F and E sub-classes), fused results clearly indicate a
redistribution of masses into sub-classes.



TABLE I
DS THEORETIC MASS ASSIGNMENT MODELS OF THE EVIDENCE GENERATED BY SH AND SS

BoE Region (a) Region (b) Region (c) Region (d)
EH(�) {ΘH} {T,ΘH} {T,ΘH \O,ΘH} {T,ΘH \O,ΘH}
(Hard) = {1.0} = {0.7, 0.3} = {0.4, 0.4, 0.2} = {0.7, 0.2, 0.1}
ES(�) {FE ,ΘS} {FE , (S, FE , TE),ΘS} {(S, FE , TE), (SF , FE , TE),ΘS} {(SF , TE),ΘS}
(Soft) = {0.8, 0.2} = {0.8, 0.1, 0.1} = {0.4, 0.5, 0.1} = {0.9, 0.1}
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Fig. 3. Fusion results corresponding to modal updating of hard evidence.
rCUE is used for region (a); cCUE is used for all other regions with α=0.3.

3) Modal Updating Followed by Temporal Updating of
Hard Evidence: Here, E∗[k+ 1]=E∗[k]C (EH [k+ 1]CES [k+
1]), i.e., this scheme combines the two schemes previously
mentioned. Fusion center updates itself by first refining the
hard evidence using soft evidence. In such a scenario, one
may select α to reflect the integrity of the existing knowledge.
Fig 4 shows the fusion results.
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Fig. 4. Fusion results corresponding to modal updating followed by temporal
updating of hard evidence. Modal update is done as in Section V-B.2; temporal
update is done via rCUE with α=0.3.

VI. CONCLUDING REMARKS

The CUE possesses several intuitively appealing features
which seem to indicate its suitability for scenarios that call for

soft and hard evidence fusion. In particular, it can accommo-
date sources possessing non-identical scopes and it performs
reasonably well when confronted with contradictory evidence.

Among various issues that warrant further investigation,
of particular importance is the computational complexity that
hampers the use of DS theoretic methods when working with
a high number of sources and/or source FoDs having high
cardinality. The conditional approach certainly helps because
it does not require one to work with an ‘expanded’ FoD. How-
ever, much more has to be done to lighten the computational
burden. The use of special mass assignments (e.g., Dirichlet
structure [10]) is one strategy that we are currently studying.

Given that evidence updating is in general not ‘commuta-
tive’, another issue that requires attention is how one may
‘sequence’ the evidence sources.
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