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Abstract—In this paper, we introduce the use of accuracy
criterion, estimated for each data sample in addition of the
data feature. This complementary information is used during the
combination of features to weight the data influence to produce
a decision in a combination scheme. The major idea lies in the
fact that all extracted measures or features are stained of errors,
inaccuracy, and that kinds of errors must be taken into account
during the combination and conflict management. We show in a
generic case, how to express the accuracy criterion and how to
use them in a belief function. In a classical classification problem,
we proof also the contribution of the accuracy information in the
improvement of the classification results.

Keywords: Accuracy, Belief Function, Conflict, Dynamic
Feature Selection.

I. INTRODUCTION

Image processing methods belong to approach of non
destructive testing. All of these applications come from the
science of measurement for which accuracy, systematic bias
are critical parts. From another point of view, image processing
comes also from computer sciences and inherits from this
domain lot of algorithms and developments. In such context,
digital information is considered exact and complete. Since the
last decade, image processing progress comes from computer
sciences and the link between the metrological purpose and
the image content are systematically forgotten.

In this work, we introduce accuracy criterion estimated for
each feature computed from image data (section II). We define
that each image property as histograms, texture characteristics,
etc. should be involved in this accuracy criterion, which
expresses how the computed data reflect the image content.
If the processing chain use only one feature to analyze the
data, the accuracy criteria has few incidence in the decision,
in return if several features are computed this criteria should
be used to dynamically choose or weight the decision in a
combination scheme.

Such system is presented in this paper (figure 1) and
included 4 steps: feature extraction (section II-A), accuracy
measurement(section II), first labelisation ((section II-C) be-
fore the combination of the labels with taken into account of
the feature accuracy (section II-D). To show the improvement
due to this novel approach, we develop an example based
on low-level optical character recognition for the MNIST
database [1], [2] using three shape features (section IV).

II. ACCURACY MEASUREMENT

By definition, the base of metrology is the definition,
realization and dissemination of units of measurement [3],
measured properties being quantized by assigning a property
value in some multiple of a measurement unit. But from one
of the first definition , notions of uncertainty and error are
described as inseparable from the measure [4], [5]. Different
standard informations associated to the measure are defined :

• Accuracy that is the degree of exactness which the final
product corresponds to the measurement standard.

• Precision that refers to the ability of a measurement to
be consistently reproduced

• Reliability that refers to the consistency of accurate
results over consecutive measurements over time.

• Traceability that refers to the ongoing validations that the
measurement of the final product conforms to the original
standard of measurement.

In this work we use features for which the ability to describe
the image content could be specify. In such cases, we can
define the reference as the data set completely described
without loss. Accuracy could be expressed as the normalized
distance between the reference and the data described by the
feature. Thus a constraint appears in our scheme : the selected
feature must be invertible, ie, an image can be reconstructed
from its values.

A. Shape descriptors and image reconstruction from them

For the validation, we chosen to work with shape descriptors
and particularly with Cartesians, centered and Zernicke mo-
ments, greatly used in image processing(section II-A). In such
applications, moments are combined to produce more infor-
mative form, the invariants. Unfortunately, if it is possible to
reconstruct image from moments, it is not possible from more
complex information as the invariant. Upon the application
problematics, it is not a good choice because the centered and
Cartesian moments are strongly correlated. Nevertheless, we
are interested to know how the combination could solve such
difficulties.

Shortly, the shape descriptors are defined as follows

• Cartesian’s moments : The descriptors are the simplest
form obtained from the discrete moment computed from



Figure 1. Combination system of local decision with accuracy integration

pixels values: Pxy . The moment mpq is defined by :

mpq =

M∑
x=1

N∑
y=1

xpyqPxy (1)

In particular, the image gravity center of coordinates
(x̂, ŷ) is obtained by zero-order and one-order moments
:

m00 =

M∑
x=1

N∑
y=1

Pxy and x̂ = m10

m00
, ŷ

m01

m00

• centered’s moments : These descriptors are deduced from
the Cartesian moments by centering the image content
around gravity center of the image :

mpq =

M∑
x=1

N∑
y=1

(x− x̂)p(y − ŷ)qPxy (2)

• Zernike’s moments : The Zernike moment of m+n order
is defined by :

Amn =
m+ 1

π

∑
x

∑
y

PxyVmn(x, y) (3)

where V (m,N) is the Zernike polynomial expressed in
polar coordinates:

Vmn(r, θ) = Rmn(r) exp(inθ) (4)

Rmn(r) =

m−|n|
2∑
s=0

(−1)sF (m,n, s, r) (5)

F (m,n, s, r) =
(m− s)!

s!(m−|n|2 − s)!(m−|n|2 − s)
rm−2s(6)

Due to the unicity theorem, the sequence of mpq moments
is defined in a single manner from the Pxy pixels sequence
and conversely the Pxy is defined in a single manner by the
mpq moments. We can describe and reconstruct an image from
the complete set of moments mpq or Amn, that is defined
for a sufficiently high order. When the order is not sufficient,
the image reconstruction is approximative and more or less
details are omitted. From the above shape descriptors, we can
expressed the reconstructed image P̃xy , computed from the
moments. Shortly, the shape descriptors are defined as follows

• Cartesian’s moments : Shutler [6] explain that we can
retrieve a function f̂(x, y) if we know all moments Mpq

of f(x, y) function

f̂(x, y) =

NMax∑
p=0

NMax∑
q=0

f̂pqx
pyq, NMax = p+ q (7)

It’s necessary to calculate constant coefficient f̂pq for
obtain same moments for f̂(x, y) and f(x, y) functions

Mpq =
∑
i

∑
j

f̂ij
1

(i+ p+ 1)(j + q + 1)

∗ (1− (−1)i+p+1)(1− (−1)j+q+1) (8)

• centered’s moments : Used the same processus of Carte-
sian’s reconstruction with centered coordinates

f̂(x, y) =

NMax∑
p=0

NMax∑
q=0

f̂pq(x− x̂)p(y − ŷ)q (9)

• Zernike’s moments : According to Shutler [6], Khotanzad
[7] reconstruct function f̂(x, y) with :

f̂(r, θ) =

NMax∑
m=0

NMax∑
n>0

AmnVmn(r, θ) (10)

m− |n| even and |n| ≤ m. After development we obtain
:

f̂(r, θ) =

NMax∑
m=0

NMax∑
n>0

(Cmn cos(nθ)

+ Smn sin(nθ)Rmn(r) +
Cm0

2
Rm0(r)) (11)

Cmn is real part of Amn with :

Cmn =
2m+ 2

π

∑
m

∑
n

f(r, θ)Rmn(r) cos(nθ) (12)

and Smn is imaginary part with :

Smn =
−2m− 2

π

∑
m

∑
n

f(r, θ)Rmn(r) sin(nθ) (13)

For all the expression, the P̃xy values are defined on integer
domain and not in binary manner, so an additional operation
is required to binarize the reconstructed image. To find the
good threshold, the accuracy criterion is used in a closed loop
function to find the value which gives the minimal distance
between the reconstructed image and the original ones.

τb = arg0≤τ≤τmax
d(P (x, y), P̃ (x, y)) (14)

B. Distance formulation

To be coherent with the accuracy definition, we need a
function defined between 0 and 1, which expressed how the
reconstructed image P̃ reflected the original image P . Such
expressions are well known and based on a description of four
sets, L00 the true negative and L11 the true positive values (ie
the pixels well reconstructed) completed by the L10 and L01



values for the errors of reconstruction. Thanks to these sets,
we can define the accuracy criterion :

ρ(P, P̃ ) =
l00 + l11

l00 + l11 + l10 + l01
(15)

For a perfect reconstruction, without error, the accuracy
reach 100% and linearly decreases on each sides of this
optimum. An reconstruction error on white or black pixel
induce the same loss of accuracy.

C. Accuracy and classification
Before presenting how to combine the accuracy criterion in

the belief theory, we will see how this criterion varies on our
test data. Figure 2 shows for each class of the datasets, the
cumulative histograms of accuracy according to the classes
reconstructed with Zernike moments at 15th order. This curve
allows to know the rate of samples for each classes where
accuracy is lower than a specific rate. In particular, we show
that more than 20% of samples have an accuracy lower than
50% and that rate grow up to 45% in the case of the class 4!

Figure 2. Cumulated histogram of the accuracy according to the classes
reconstructed with Zernike moments at 15’th order

D. Integration in TBM
Our purpose is to combine informations from the computed

moments to produce a decision of classification. As we can’t
use directly the vector of moments in the beliefs functions,
we needs to transform these vectors in discrete labels by
classifiers.

To construct belief functions, several estimate models are
described in the literature [8] [9] [10]. In this paper, we use
model 2 of Appriou [11]. The beliefs functions are produced
starting from the posterior probabilities resulting from the
classifiers f(x|ωq) Posterior probabilities

m(ωq) = 0

m(ωq) = αq(1−R.L(ωq|x)) (16)
m(Ω) = 1− αq(1−R.L(ωq|x))

where R is a normalization factor of L included in
]0, max

q∈[1,N ]
(L(ωq|x))−1] and αq is the weakening factor which

corresponds in the Appriou’s theory to the reliability of a
source to decide ωq [12]. To embedded our accuracy criterion
in the Appriou’s model, we modify the definition of α and
replace it by our accuracy criterion. In further works, we
will combine these two complementary informations. For this
works, αq becomes α = ρ(P, P̃ )) and depend only on the
features computed from the samples. Our intention is not to
replace the reliability (given by confusion matrix) but rather
to show the contribution that can give accurate.

III. INFORMATION FUSION

To obtain belief functions, we need a classifier step but each
classifier could be analyzed as a system which organize the
features space in regions. As this spatial organization is great
dependent of the classifier, it is not possible to choose the
right one for all the samples and all the classes. We decided
to combine the decision produced by several classifiers for our
three moments.

A. Conjunctive combination

Evidence theory offers appropriate aggregation tools to
combine informations [13]. For each classifiers S and each
classes C, we obtain this matrix of beliefs functions. The rule
of combination proposed by Smets is thus defined by :

m∩(A) =

M∑
B∩C=A

m1(B).m2(C)

m∩(∅) =

M∑
B∩C=∅

m1(B).m2(C) (17)

However, this combination generates belief on m(∅), the
assumption of the closed world is not respected.

B. Conflict management

Upon Colot and Lefevre, there are three reasons why a
conflict appears when combining evidence [14].
• An aberrant measurement given by a sensor
• Imprecise model of the belief function may provide a

conflict
• Sources to be aggregated are numerous, a conflicting

mass can be induced even if there sources agree
Our point of view extend clearly this purpose, by integrating
the unability of a pair (feature, classifier) to well describe
a particular sample due to the bias, uncertainty, inaccuracy
attached to the measurement.

Technically, the conflict is associated with the mass m(∅)
during the combination step. In this study we have tried three
methods of conflict management. First one is normalization
by conflict proposed by Dempster-Shafer :

mDS(A) =
m∩(A)

1−m∩(∅)
, A 6= ∅

mDS(∅) = 0 (18)



The second one is the association of the conflict on m(Ω).
Yager [15] postulates that the frame of discernement is exhaus-
tive (closed-world assumption). Thus, the conflit is distribute
on several hypothesis ωq during pignistique step.

mY (A) = m∩(A)

mY (∅) = m∩(A) +m∩(∅) (19)

The third one is the distribution of the conflict on the union
of the assumption generating it proposed by Dubois-Prade
[16]. This rule of combination is better adapted and more
specific than Yager’s rule because conflit is only distributed
on hypothesis who generate it.

mDP (A) = m∩(A) +

M∑
B∩C=∅B∪C=A

m1(B).m2(C)∀A ⊆ Ω

Yager and Dubois-Prade combination rule are commutative
but not associative [17], [18], it’s therefore necessary to
choose combination order. Figure 3 show the combination
order used in a three step of combination :

• Classifiers combination : All belief functions associated
with the same classes and from different classifiers are
combined, each matrix represented for this step in figure
3 is the same form as that presented figure ??.

• Attributes combination : All belief functions associated
with the same classes and from different attributes are
combined

• Classes combination : All functions from different classes
are combined, this step is the most expensive in terms
of computing time. Finally we obtained a unique belief
function.

Figure 3. Combination protocol

IV. RESULTS

The following applications are based on the decisions re-
sulting from 6 classifiers Quadratic Bayes Normal Classifier
(QBNC), Fisher’s Least Square Linear Classifier (FLSLC),
Nearest Mean Classifier (NMC), k Nearest Neighbors Clas-
sifier (KNNC), Parzen Classifier (ParzenC), Naive Bayesian
Classifier (BayesN). They were chosen because they have

very different behavior. Each of those classifiers has been
first trained and tested on all the data sets to compute global
performances. Training and testing data sets have been build
using bootstraping [19] with original data, with null intersec-
tion between the sets each time. KNNC, ParzenC and NMC
are adaptative, their parameter value (i.e. k for KNNC and
ParzenC) is optimized during the training phase. Besides,
once the parameter fixed, it is not recomputed during the
recognition.

A. Classification without accuracy and information combina-
tion

In first step, we will compute the ability of each classifier
to produce the right decision from each of the three moment
described at 15 order. Table I presents the error rate obtain
by each classifier. Without surprise, the k Nearest Neighbors
Classifier is the more reliable for the three moments, but the
Fisher’s Least Square Linear Classifier reach better results for
Cartesian and centered moment. Due to the complexity of the
samples cloud in each features space, Bayes approaches are
in difficulty.

Moments
Cartesians Zernike Centered

KNNC 0,33 0,08 0,38
QBNC 0,79 0,90 0,73
FLSLC 0,15 0,14 0,13
NMC 0,65 0,24 0,55

ParzenC 0,90 0,90 0,90
BayesN 0,53 0,78 0,56

Table I
ERROR RATE FOR EACH CLASSIFIERS

B. Application 2 : the complete scheme

In this application, we use the probabilities of density
provided by the classifiers and add the accuracy measurement
to combine the results. The curves in figure 4 show the error
rate in function of the rejection rate, defined by a threshold
applied on the pignistic probability.

For null rejection rate, we note that the conflict management
does not improve the results. Then when the rejection rate
increase, the impact of the conflict management increases
too to reduce the error rate. The result without rejection is
near from 10%, very closed of the best result obtain by the
k Nearest Neighbors Classifier alone. It is very interesting
because we could have awaited results quite worse, following
the previous application. In fact, the diversity of classifier
allow to find a coherence between classification results.

When the rejection rate increase, the decision is more
difficult to take and the conflict management allow a better
construction. Nevertheless, the profit does not exceed 2%,
which is lower than the expected increase. In addition, re-
sults obtained by Dubois-Prade and Yager formulations are
identical.

The confusion matrix reveals (Figure 5) that certain classes
generate more problems for the recognition. For example, we



Figure 4. Error rate vs. rejection rate for decision on 10 classes

observe that number 5 is regularly confused with number 1
or 3. Such result show the interest to split the problem in a
decision tree.

To end with these results, we can see that for the conflict
management with Dempster-shafer formulation, there is a
serious degradatation of the results for high rejection rate.
This fact is due to some samples that are clearly closed to
a wrong classe and mistake the system with a simple conflict
management.

Figure 5. Confusion matrix

V. DISCUSSIONS

As we can see in result section, the conflict management
proposed by Yager and Dubois-Prade provide same results. As
the two expressions are different, the problem can come only
from the distribution of the masses of belief. In particular, this
problem is due to the fact that Appriou model 2 don’t generate
conflit between two noncomplementary hypothesis. As shown
in figure 6, the intersect hypothesis who appears during com-
bination of elementary masses sets {m(ωq),m(ωq),m(Ω)}
limits the conflict production to the mass m(∅). We show the
combination in the case of a combination of 4 elementary mass
functions build with Appriou 2 model. Each bar represents
the 16 parties as possible for 4 classes. A filled square

represents a focal element of the belief function (M12 con-
tains {m(ω1),m(ω2),m(ω12),m(Ω)} focal elements). The
red lines are the combinations that generate conflict. We can
see only one conflict occurs during the process of combination.
This conflict is due to combination of m(ω4) and m(ω4).
Thus, during the conflict management, Yager and Dubois-
Prade methods will allocate both the conflict with the mass
m(Ω).

This observation raises two issues:
• Several methods of conflict management lose interest
• Conflict is almost nonexistent

Figure 6. Conflict generate with belief create by Appriou 2 model

Figure 7 illustrates the same case of combination excepting
that elementary belief function was created with Appriou 1
model. With this approach, the conflict appears at every stage
of combination. Moreover, it will not come exclusively from a
combination of complementary mass. In this case, Yager and
Dubois-Prade methods will not provide the same results.

Figure 7. Conflict generate with belief create by Appriou 1 model

VI. CONCLUSION

In this work, we proposed to integrate accuracy criteria with
the feature information in a combination scheme of several



features. We have shown the relevance of the accuracy criteria
in a classical application and how the ability of a feature to
describe the sample has great variations. A feature could be
well adapted for one sample and totally maladjusted to one
other. To show the impact of such point of view, we have
extended the Appriou’s formulation for the Transfer Belief
Model to integrate the accuracy criteria. Then we have shown
how the final error rate could be improved.

We chosen to use two correlated features in our features set.
In classical formulation of combination, the error’s rate ex-
plode when these two features induce together bad decisions.
Clearly, in such cases our hyphenation was that mistakes are
due to features inaccuracy. In a classical formulation, when
these two features are mistaken in front of the third, the
decision tends to be wrong, when in our case if the feature
accuracy is lower than 50%, the feature impact is reduced in
the combination and the third feature take by opposition more
weight.

By integrating feature accuracy in the belief function, we
solve the problem induced by combining correlated features.
It’s a very interesting potentiality, because it allows combining
several features with low constraints. This possibility simpli-
fies the construction of image processing chain. Another inter-
esting point of view is that the system dynamically combines
the features to process the final decision. Because the accuracy
is different between two samples, each static combination
could only choose the less bad solution of combination defined
by off-line learning. If the learning stage is well control
yet with last scientific result, it greatly dependant from the
learning set. Trough quality criteria and diversity measure, this
quality could be managed by several approaches, but any is
able to locally optimize the decision in on-line process. Our
natural extension of the purpose it to work on dynamical image
processing chain, with feed-back point managed par accuracy
criterion.

Clearly, the proposed results are lower than the bests results
obtained for the MNIST database, used in our experimental
part. For example P.Shang [20] obtain a rate of recognition of
99,96% with 0,77% of rejection. But in such cases, features
spaces are of higher dimension and with features of higher
complexity. In [21] the same observation could be made. Our
purpose was to show the relevance of the accuracy criteria for
low level features, and naturally in future works by integrating
others features higher results will be obtained.

In this work we don’t use the notion of source quality
defined by Apriou in his belief function. But now as we have
shown the improvement obtained by the accuracy criterion use,
we are able to combine these two kinds of information: the
ability of the feature to be relevant for the decision ωq and the
accuracy of the feature to describe the sample x. Nerveless a
simple multiplication could not solve the problem, and a more
complex expression is needed.

Finally, the major problem to solve in this work lies in
the choice of the conflict management formulation. As we
have shown, in the example of the MNIST Database, the
conflict management functions are not well adapted and in

consequences have few improvement in the final result. Our
initial choices was made upon the most classical way of the
literature, now we need to explore more complex form to find
the best appropriate formulation in our context of decision by
taking into account of the feature accuracy.
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