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Abstract— Electronic Support Measures consist of 

passive receivers which can identify emitters which, in turn, 

can be related to platforms that belong to 3 classes: Friend, 

Neutral, or Hostile. Decision makers prefer results presented 

in STANAG 1241 allegiance form, which adds 2 new classes: 

Assumed Friend, and Suspect.  Dezert-Smarandache (DSm) 

theory is particularly suited to this problem, since it allows 

for intersections between the original 3 classes. However, as 

we know, the DSm hybrid combination rule is highly 

complex to execute and requires high amounts of resources. 

We have applied and studied a Matlab implementation of 

Tessem's klx approximation technique in the DSm theory for 

the fusion of ESM reports. Results are presented showing 

that we can improve on the time of execution while 

maintaining the same rate of good decisions. 

Keywords: Dezert-Smarandache Theory, ESM, klx, 

approximation. 

I. INTRODUCTION 

In terms of classification, the Dezert-Smarandache 

theory (DSmT) can become quite useful, especially for 

the direct resolution of classification for cases of 

hierarchical classes structures. For instance, we have the 

case of the allegiance classification structure suggested by 

STANAG 1241 where a structure of five classes (3 main 

classes and 2 derived classes) is required. The DSmT is 

able to output to any of those classes without 

modifications to its fusion process. 

 

However, this example is still a simple one and both 

DSmT theories, with or without approximation, can solve 

it quite easily, which wouldn’t be the case for 

classification problems of higher dimension. By 

dimension we mean the cardinal of the frame of 

discernment. In fact, the DSmT, as it is, can become 

highly complex and computationally prohibitive as soon 

as we reach a dimension of 6. That is a classification of a 

problem having six main classes and up to, in the worst 

case scenario, a total of 7,828,353 possible derived 

classes. 

  

 

 

 

 

Various avenues of research have been tried to avoid or 

address this complexity problem [10, 13, 18]. However, 

even just counting the number of possible classes is still 

an active problem in mathematics known as the Dedekind 

problem, or the problem of counting antichains [9, 18].   

 

In this paper, we considered using an approximation 

technique to restrain the staggering amount of data that 

the DSmT can generate in its fusion process. More 

specifically we have chosen Tessem’s klx approximation 

technique [4] and used it into the DSmT with the DSm 

hybrid combination rule (DSmH). We have also 

experimented with the fusion process while using the 

approximation technique and compared it to the case 

without an approximation technique to analyze how it 

affects the quality of the decision process. More 

specifically, we will compare the good decision rate in the 

two cases, with and without the use of approximation.  

 

A. Realistic Study Case 

Electronic Support Measures (ESM) consist of passive 

receivers which can identify emitters coming from a small 

bearing angle, which, in turn, can be related to platforms 

that belong to 3 classes: either Friend (F), Neutral (N), or 

Hostile (H). Decision makers prefer results presented in 

STANAG 1241 allegiance form, which adds 2 classes: 

Assumed Friend (AF), and Suspect (S).  

 

The DSm theory is particularly suited to this problem, 

since it allows for intersections between the original three 

classes of allegiance. In this way an intersection of Friend 

and Neutral can lead to an Assumed Friend, and an 

intersection of Hostile and Neutral can lead to a Suspect. 

This structure of allegiances will be referred to as 

STANAG allegiance [11].  

 



 

 
Figure 1. Venn diagram for the STANAG allegiances. 

 
Figure 1 displays a visual representation of a possible 

interpretation of STANAG allegiance in DSmT. We can 

see that even though the input consists only of 3 classes, 

we are able to give an output into 5 classes. For example, 

here we have the class ‘Suspect’, which could be the 

result obtained after fusing ‘Hostile’ with ‘Neutral’. We 

also have the class ‘Assumed Friend’, which could be the 

result obtained after fusing ‘Friend’ with ‘Neutral’. Note 

that this case example has the intersection F∩H = Ø, the 

null set, which is a constraint in DSm, leading to the use 

of its hybrid rule. This case example would be relevant 

for peace-keeping missions where Hostile and Friendly 

forces aren’t likely to be close one to another. We will be 

working on that case, with F∩H = Ø. 

 

II. DEZERT-SMARANDACHE THEORY 

The DSm theory uses the language of masses assigned 

to each declaration from a sensor (in our case, the ESM 

sensor).  In DSm theory, all unions and intersections are 

allowed for a declaration.  For our case of cardinality 3, Θ 

= {θ1, θ2, θ3}, with |Θ| = 3, D
Θ

 is still of manageable size, 

namely has a cardinality of 19 [10]. In DSm theory, a 

constraint like the one that was imposed by Figure 1, 

namely that F∩H ≡ θ1∩θ3 = Ø is treated by the DSm 

hybrid combination rule (DSmH) below: 

 

              m(A) = φ(A) [ S1(A) + S2(A) + S3(A) ]          (1) 
 

The reader is referred to a series of books [10, 13, 17] 

on DSm theory for lengthy descriptions of the meaning of 

this formula (note that the function φ is not to be confused 

with the empty set). A three-step approach was proposed 

in [12], which is used here. The incoming sensor reports 

are either: Friend (F=θ1), Neutral (N=θ2) or Hostile 

(H=θ3), Figure 1 has the interpretation of the five classes:  

 

 Friend = {θ 1 – θ1∩θ2}  (2) 

 Hostile = {θ 3 – θ3∩θ2}  (3) 

 Assumed Friend = {θ1∩θ2}  (4) 

 Suspect = {θ2∩θ3}  (5) 

 Neutral = {θ 2 – θ1∩θ2 – θ3∩θ2}  (6) 

 
 As in [15], we call STANAG-probability the pignistic 
probability assigned to the five classes shown by 
equations (2) to (6). We use the general pignistic 
transform, as shown by [10], to obtain the probability 
values of the sets used in those equations.   

III. APPROXIMATION TECHNIQUE 

 

The klx approximation technique developed by Tessem 

[4] is designed to approximate Basic Probability 

Assignment (BPA) or mass function in Dempster-Shafer 

Theory (DST). Since DSm theory works directly with 

BPAs, applying the klx approximation technique to the 

DSmH is quite straightforward and can be done without 

any changes. Figure 2 shows the algorithm of the klx 

approximation technique as described by Bauer [5] and as 

we’ve applied in our study within the DSm framework.  

 

Note that we have also considered transferring to 

DSmT Bauer's D1 approximation technique [5]. 

However, when compared to klx, D1 would have a 

greater amount of operations to execute. It seemed 

counterproductive considering that the number of 

operations, or complexity, is a factor we want to reduce.  

 

Function klx-approximation(m, k, l, x)  

% parameters list: 

% m : focal elements of bpa to approximate 

% k : minimal number of focal elements to keep  

% l : maximal number of focal elements to keep  

% x : maximal mass to be removed 

 

Sort m according to masses 

Tmass = 0; % Total mass in approximated bpa (mklx) 

f = 0;       % Number of focal elements of mklx  

while (m contains focal elements) and ( f ≤ l )  

           and ( (f < k) or (Tmass < 1 – x ) ) do 

   add next focal element A of m to mklx 

   f = f + 1; 

   Tmass = Tmass + m(A); 

end while 

Normalize mklx  

             % by dividing focal elements’ mass by Tmass 

return 

 
Figure 2. klx approximation technique. 



 

IV. A TYPICAL SIMULATION SCENARIO 

 

The pre-requisites that a typical scenario must address 

are: (1) to be able to adequately represent the known 

ground truth, (2) to contain sufficient countermeasures (or 

miss-associations) to be realistic and to test the robustness 

of the theories, (3) to only provide partial knowledge 

about the ESM sensor declaration, which therefore 

contains uncertainty, (4) to be able to show stability under 

countermeasures, yet (5) to be able to switch allegiance 

when the ground truth does so. 

 

The following scenario parameters have therefore been 

chosen accordingly: (1) ground truth is FRIEND for the 

first 50 iterations of the scenario and HOSTILE for the 

last 50, (2) the number of correct associations is 80%, 

corresponding to countermeasures appearing 20% of the 

time, in a randomly selected sequence, (3) the ESM 

declaration has a mass (confidence value in Bayesian 

terms) of 0.8, with the rest of the mass being assigned to 

the ignorance (the full set of elements, namely Θ). 

 

This scenario will be the one addressed in the next 

section, while a Monte-Carlo study is described in the 

subsequent section. Each Monte-Carlo run corresponds to 

a different realization using the above scenario 

parameters, but with a different random seed. The 

scenario chosen is depicted in figure 3.  

 

 
Figure 3: Chosen scenario. 

 

Roughly 80% of the time the ESM declares the correct 

allegiance according to ground truth, and the remaining 

20% is roughly equally split between the other two 

allegiances. Note that these percentages of occurrences 

are from a statistical point of view only, so that in the 

long run a large amount of randomly generated scenarios 

would amount to these ratios. There is an allegiance 

switch at the 50th time index, and the selected randomly 

selected seed in the above generated scenario generates a 

rather unusual sequence of 4 false Friend declarations 

starting at time index 82 (when actually Hostile is the 

ground truth). 

A. Results for the simulated scenario  

 

Before presenting the results, it should be noted that the 

original form of the DSmH tends to accumulates masses 

to intersections as is the case for any rule based on 

conjunction [14]. An ad hoc solution exists [3, 7, 8], and 

consists in renormalizing after each fusion step by giving 

a value to the complete ignorance which can never be 

below a certain factor (chosen here to be 0.04 as research 

in [14] shows that this value is appropriate for this case 

while being high enough to avoid the accumulation but 

still low enough not to interfere with the combination’s 

performances). That solution was originally developed to 

the well-known problem of DST combination, which 

tends to be overly optimistic, which in turn prevents it to 

react quickly to changes of allegiances. For more on the 

behavior of the DSmH the reader is referred to [14, 15, 

16], as we are focused on exploring the effect of 

approximation techniques on DSm in this paper.  

 

Since the whole idea behind using DSm was to present 

the results to the decision maker in the STANAG 

allegiance format, the result of figure 4 would be used. 

For the DSmH [10], it was suggested to use the 

Generalized Pignistic Probability, which is based on the 

pignistic transformation [6], in order to make a decision 

on a singleton belonging to the input ESM-allegiance.  

 

 
Figure 4: DSmH result for the chosen scenario. 

 

The decision maker would clearly be informed that 

miss-associations have occurred, since Assumed Friend 

dominates for the first 50 time indices and Suspect for the 

latter 50. The Friend declarations starting at time index 82 

cause confusion, as it should. The change in allegiance at 

time index 50 is detected quickly.  What is even more 

important is that F and AF are clearly preferred for the 

first 50 time indexes and S and H for the last 50, as they 

should. 

 



 

 
Figure 5: Approximated DSmH result for the same 

scenario with klx = (5, 6, 0.2). 
  

 
Figure 6: Approximated DSmH result for the same 

scenario with klx = (3, 6, 0.2). 
 

We can gather from figures 4 and 5 that the DSmH and 

the approximated DSmH have very similar behaviors. In 

fact, one has to look at the figures very closely to perceive 

the differences. We can see that in the first half of the 

approximated version, the assumed friend allegiance is 

slightly favored to the friend allegiance. Near the end of 

the scenario the hostile allegiance is favored to the 

suspect allegiance. However, in both cases, even if the 

smallness of the change could possibly affect our 

decision, the STANAG-probability still seems to stay 

within the same type of allegiance in the sense that a 

friend and a target of assumed friend allegiance would 

both inspire a friendly response on our part. The same can 

be said for a target of suspect or hostile allegiance that 

would both inspire a hostile or defensive response on our 

part. In short, we can easily proceed with the 

approximation and still be able to make the same decision 

the same way.  

B. Effects of varying the klx parameters  

 

We’ve realized the scenario for various values of klx for 

k ∈ [3, 10], l ∈ [6, 12] and x ∈ [0.2, 0.4]. For the cases 

where we had k=8, no changes in l and x had impact, and 
compared to the DSmH, we’ve only noticed a very small 
variation at the start and end of the simulated scenario. 
For the cases where we had k=6, no changes in l and x 
had impact and compared to DSmH, there was only very 
little variation in value throughout the scenario. The same 
is true for the cases with k=5, with the figure 5 showing 
the results for that case. The amplitude of the variation 
between DSmH and the approximated version continues 
to increase as the k value diminishes.  

 
We finally begin to notice small changes with x=0.2 as 

opposed to 0.3 or 0.4 when we reach k=4. However, the 
impact of having x at 0.2 is small and contained at the 
start of the scenario, where it gives more weight to the 
suspect class at the expense of the hostile class. For the 
cases with k=3, the impact of the change on x going to 0.2 
was more significant and lasted throughout most of the 

scenario’s duration. Also, while for cases of k ∈ [4, 8] 

the behavior of the curves were all very similar one to 
another, when we reach k=3, we observe a partial loss of 
smoothness, hence a more reactive behavior toward 
countermeasures and allegiance change. Figure 6 shows 
the case of the simulated scenario for an approximated 
DSmH with klx = (3, 6, 0.2). Note that in all our 
experimentations for our chosen scenario the l parameter 
never had any visible impact. 

 

V.   MONTE CARLO SIMULATIONS 

 

Although a special case such as the one described in 

the previous section offers valuable insight, one might 

question if the conclusions from that one scenario pass the 

test of multiple Monte-Carlo scenarios. This question is 

answered in this section.  

  
In order to expend the parameter space, we have realized 
the simulations of the current section to 80 and 90% for 
the ESM certainty, and with an ESM confidence at 80% 
and an ignorance threshold at 0.04 as before. The number 
of Monte-Carlo runs was set to 100. The randomly 
generated ESM stream of reports used for both the DSmH 
and the approximated DSmH are all the same so that we 
can freely compare the effects of the use of the 
approximation, and the impact of the variation of its 
parameters. 
 

As for the choice of a the graphical display to highlight  
the results of our simulations, we went with the rate of 
good decisions, where a good decision is as we have 
mentioned earlier, when we conclude to be friendly 
toward a friendly behaving target, when the ground truth 



 

is of class friend. A friendly-behaving target is a target 
that is concluded to be a friend or an assumed friend. We 
also have a good decision when we conclude to be hostile 
toward a hostile behaving target, when the ground truth is 
of class hostile. A hostile-behaving target is a target that 
is concluded to be a hostile or a suspect. A decision is 
made by taking the set of maximum STANAG-
probability.  
 

 
Figure 7. DSmH result after 100 Monte-Carlo runs. 
 

 
Figure 8. Approximated DSmH result with klx = (5, 8, 

0.2) for the same Monte Carlo simulation. 
 

 
Figure 9. Approximated DSmH result with klx = (3, 8, 

0.2) for the same Monte Carlo simulation. 
 

A. Effects of varying the klx parameters  

 

Simulations were done on a computer with an AMD 

Phenom II X4 955 processor having 8 GB of RAM. We 

should keep in mind that it is the relative time of 

execution which is important here. For figures 7 to 11, the 

simulations had a value of 80% for the ESM certainty and 

the value of the x parameter was maintained at 0.2 since 

changing it had no impact on good decision rate. 

 

Figures 8 and 9 show us the effect of the approximation 

from the good decision rate point of view when compared 

with the DSmH case from figure 7. Like for the typical 

simulated scenario from previous section, l had no visible 

impact, and x had a limited impact only as the k 

parameter went below 4. As for the k parameter, it started 

having an impact when we reached 6, where the impact 

was on only three iterations. As the k parameter reaches 5, 

a very slight positive impact throughout the whole 

simulation can be seen. As for k=4 and k=3, we have a 

slight deterioration of the good decision rate but it is still 

very small and rather insignificant considering the gain in 

time execution as figure 11 shows us. For the cases with 

an ESM confidence at 90%, all the approximated results, 

have no significant impact on the good decision rate, 

except with klx = (3, 8, 0.2) where we had minimal 

impact.  

 

We have the time of execution versus k and l 

parameters from the klx approximation technique on 

figures 10 and 11. Specifically, figure 10 has the curve of 

the time of execution of the combination and 

approximation process only. The x-y plane, valued at 

325.97 seconds on figure 10 indicates the time from 

which the approximation process provides a higher gain 

in time than the time it consumes. It is the time of 

execution of the DSmH without approximation. We can 

see that the k parameter has to reach 5 before we start 

seeing an improvement. Before that value, the 

approximation takes more time to execute than it helps us 

gain. We can achieve a 30% improvement on time of 

execution when we reach k = 3. The parameter l has no 

impact on time. The absence of impact of the l parameter 

is suspected to be caused by the fact that this simulated 

scenario case uses simple support functions as inputs. 

 

In figure 11, we have the curve of the time of execution 

for the whole simulation which, on top of the combination 

and approximation processes, includes the generalized 

pignistic transformation (GPT) which is used in the 

decision process. Above 95% of the extra time of 

execution, when compared to figure 10, is composed of 

the GPT. In figure 10, the x-y plane, representing the time 

of execution of the simulation without approximation, is 

valued at 1767.6 seconds. We can see that we can have a 



 

50% reduction in time of execution when we reach k=3 

and that l has no impact. As we compare figure 10 and 11, 

we see that the GPT is the step that benefits the most from 

the approximation process.  

 

 
Figure 10. Execution time for the combination and 

approximation processes. 
 

 
Figure 11. Execution time for the whole simulation. 
 

VI. CONCLUSION 

The previous section displays the behavior for different 

cases of klx approximation on the same simulated ESM 

data. It also shows the time of execution of each of those 

simulations. From our results we can conclude that we 

can successfully attain the same good decision rate with 

DSmH as with an approximated DSmH for the chosen 

scenario, while achieving lower times of execution 

including the time to approximate when we reach a 

certain level of approximation.  

 

Future work considered includes the exploration of the 

use of Bauer’s D1 approximation [5] in DSmT. Even if it 

adds to the number of operations and in the complexity of 

the system, it would be interesting to see if the gain 

acquired by approximating is sufficient to counter the 

increase in complexity.  
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