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Abstract—In this paper, we present a Non-Bayesian condition-
ing rule for belief revision. This rule is truly Non-Bayesian in
the sense that it doesn’t satisfy the common adopted principle
that when a prior belief is Bayesian, after conditioning by X,
Bel(X|X) must be equal to one. Our new conditioning rule for
belief revision is based on the proportional conflict redistribution
rule of combination developed in DSmT (Dezert-Smarandache
Theory) which abandons Bayes’ conditioning principle. Such
Non-Bayesian conditioning allows to take into account judiciously
the level of conflict between the prior belief available and
the conditional evidence. We also introduce the deconditioning
problem and show that this problem admits a unique solution
in the case of Bayesian prior; a solution which is not possible
to obtain when classical Shafer and Bayes conditioning rules are
used. Several simple examples are also presented to compare
the results between this new Non-Bayesian conditioning andthe
classical one.

Keywords: Belief functions, conditioning, deconditioning,
probability, DST, DSmT, Bayes rule.

I. I NTRODUCTION

The question of the updating of probabilities and beliefs
has yielded, and still yields, passionate philosophical and
mathematical debates [3], [6], [7], [9], [12], [13], [17], [20],
[22] in the scientific community and it arises from the
different interpretations of probabilities. Such question has
been reinforced by the emergence of the possibility and the
evidence theories in the eighties [4], [16] for dealing with
uncertain information. We cannot browse in details here all
the different authors’ opinions [1], [2], [8], [10], [14], [15]
on this important question but we suggest the reader to start
with Dubois & Prade survey [5]. In this paper, we propose a
true Non-Bayesian rule of combination which doesn’t satisfy
the well-adopted Bayes principle stating thatP (X |X) = 1
(or Bel(X |X) = 1 when working with belief functions).
We show that by abandoning such Bayes principle, one can
take into account more efficiently in the conditioning process
the level of the existing conflict between the prior evidence
and the new conditional evidence. We show also that the
full deconditioning is possible in some specific cases. Our
approach is based on belief functions and the Proportional
Conflict Redistribution (mainly PCR5) rule of combination
developed in Dezert-Smarandache Theory (DSmT) framework
[18]. Why we use PCR5 here? Because PCR5 is very efficient

to combine conflicting sources of evidences1 and because
Dempster’s rule often considered as a generalization of Bayes
rule is actually not deconditionable (see examples in the
sequel), contrariwise to PCR5, that’s why we utilize PCR5.
This paper is organized as follows. In section II, we briefly
recall Dempster’s rule of combination and Shafer’s Condition-
ing Rule (SCR) proposed in Dempster-Shafer Theory (DST)
of belief functions [16]. In section III, we introduce a new
Non-Bayesian conditioning rule and show its difference with
respect to SCR. In section IV, we introduce the dual problem,
called the deconditioning problem. Some examples are given
in section V with concluding remarks in section VI.

II. SHAFER’ S CONDITIONING RULE

In DST, a normalized basic belief assignment (bba)m(.)
is defined as a mapping from the power set2Θ of the
finite discrete frame of discernmentΘ into [0, 1] such that
m(∅) = 0 and

∑

X∈2Θ m(X) = 1. Belief and plausibility
functions are in one-to-one correspondence withm(.) and are
respectively defined byBel(X) =

∑

Z∈2Θ,Z⊆X m(Z) and
Pl(X) =

∑

Z∈2Θ,Z∩X 6=0 m(Z). They are usually interpreted
as lower and upper bounds of a unknown measure of subjective
probabilityP (.), i.e.Bel(X) ≤ P (X) ≤ Pl(X) for anyX . In
DST, the combination of two independent sources of evidence
characterized bym1(.) and m2(.) is done using Dempster’s
rule as follows2:

mDS(X) =

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)

1 −
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2)
(1)

Shafer’s conditioning rule3 (SCR) is obtained as the result
of Dempster’s combination of the given prior bbam1(.)
with the conditional evidence, sayY represented by a source
m2(.) only focused onY , that is such thatm2(Y ) = 1. In
other words,m(X |Y ) = mDS(X) = (m1 ⊕ m2)(X) using
m2(Y ) = 1 and where⊕ symbol denotes here Dempster’s

1Due to space limitation, we do not present, nor justify againPCR5 w.r.t.
other rules since this has been widely explained in the literature with many
examples and discussions, see for example [18], Vol. 2. and our web page.

2assuming that the numerator is not zero (the sources are not in total
conflict).

3also called Dempster’s conditioning by Glenn Shafer in [16].



fusion rule (1). It can be shown [16] that the conditional belief
and the plausibility are given by4:

Bel(X |Y ) =
∑

Z∈2Θ

Z⊆X

mDS(Z|Y ) =
Bel1(X ∪ Ȳ ) − Bel1(Ȳ )

1 − Bel1(Ȳ )

(2)

Pl(X |Y ) =
∑

Z∈2Θ

Z∩X 6=∅

mDS(Z|Y ) =
Pl1(X ∩ Y )

Pl1(Y )
(3)

When the belief is Bayesian5, i.e. Bel(.|Y ) = Pl(.|Y ) =
P (.|Y ), SCR reduces to classical conditional probability def-
inition (Bayes formula), that isP (X |Y ) = P (X ∩ Y )/P (Y ),
with P (.) = m1(.). Note that whenY = X and as soon
as Bel(X̄) < 1, one always gets from (2),Bel(X |X) = 1
becauseBel1(X ∪ Ȳ ) = Bel1(X ∪ X̄) = Bel1(Θ) = 1.
For Bayesian belief, this impliesP (X |X) = 1 for any X
such thatP1(X) > 0, which we callBayes principle. Other
alternatives have been proposed in the literature [8], [15],
[21], but almost all of them satisfy Bayes principle and they
are all somehow extensions/generalization of Bayes rule. A
true Non-Bayesian conditioning (called weak conditioning)
was however introduced by Planchet in 1989 in [14] but
it didn’t bring sufficient interest because Bayes principle
is generally considered as the best solution for probability
updating based on different arguments for supporting such
idea. Such considerations didn’t dissuade us to abandon Bayes
principle and to explore new Non-Bayesian ways for belief
updating, as Planchet did in nineties. We will show in next
section why Non-Bayesian conditioning can be interesting.

III. A N ON BAYESIAN CONDITIONING RULE

Before presenting our Non Bayesian Conditioning Rule,
it is important to recall briefly the Proportional Conflict
Redistribution Rule no. 5 (PCR5) which has been proposed
as a serious alternative of Dempster’s rule [16] in Dezert-
Smarandache Theory (DSmT) [18] for dealing with conflicting
belief functions. In this paper, we assume working in the same
fusion space as Glenn Shafer, i.e. on the power set2Θ of
the finite frame of discernmentΘ made of exhaustive and
exclusive elements.

A. PCR5 rule of combination

Definition: Let’s m1(.) andm2(.) be two independent6 bba’s,
then the PCR5 rule of combination is defined as follows
(see [18], Vol. 2 for details, justification and examples) when
working in power set2Θ: mPCR5(∅) = 0 and∀X ∈ 2Θ \ {∅}

mPCR5(X) =
∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩X=∅

[
m1(X)2m2(X2)

m1(X) + m2(X2)
+

m2(X)2m1(X2)

m2(X) + m1(X2)
] (4)

4Ȳ denotes the complement ofY in the frameΘ.
5the focal elements ofm1(.|Y ) are singletons only.
6i.e. each source provides its bba independently of the othersources.

All fractions in (4) having zero denominators are discarded.
The extension and a variant of (4) (called PCR6) for
combining s > 2 sources and for working in other fusion
spaces is presented in details in [18]. Basically, in PCR5 the
partial conflicting masses are redistributed proportionally to
the masses of the elements which are involved in the partial
conflict only, so that the specificity of the information is
entirely preserved through this fusion process. It has been
clearly shown in [18], Vol. 3, chap. 1 that Smets’ rule7 is
not so useful, nor cogent because it doesn’t respond to new
information in a global or in a sequential fusion process.
Indeed, very quickly Smets fusion result commits the full
of mass of belief to the empty set!!! In applications, some
ad-hoc numerical techniques must be used to circumvent this
serious drawback. Such problem doesn’t occur with PCR5
rule. By construction, other well-known rules like Dubois &
Prade, or Yager’s rule, and contrariwise to PCR5, increase
the non-specificity of the result.

Properties of PCR5:
• (P0): PCR5 rule is not associative, but it is quasi-

associative (see [18], Vol. 2).
• (P1): PCR5 Fusion of two non Bayesian bba’s is a non

Bayesian bba.
Example: ConsiderΘ = {A, B, C} with Shafer’s model
and with the two non Bayesian bba’sm1(.) and m2(.)
given in Table I. The PCR5 fusion result (rounded at the
fourth decimal) is given in the right column of the Table
I. One sees thatmPCR5(.) in a non Bayesian bba since
some of its focal elements are not singletons.

Table I
PCR5FUSION OF TWO NONBAYESIAN BBA’ S.

Focal Elem. m1(.) m2(.) mP CR5(.)

A 0.1 0.2 0.3850
B 0.2 0.1 0.1586
C 0.1 0.2 0.1990

A ∪ B 0.3 0 0.0360
A ∪ C 0 0.5 0.2214

A ∪ B ∪ C 0.3 0 0

• (P2): PCR5 Fusion of a Bayesian bba with a non Bayesian
bba is a non Bayesian bba in general8.
Example: ConsiderΘ = {A, B, C} with Shafer’s model
and Bayesian and a non Bayesian bba’sm1(.) andm2(.)
to combine as given in Table II. The PCR5 fusion result
is given in the right column of the Table II. One sees that
mPCR5(.) is a non Bayesian bba since some of its focal
elements are not singletons.
This property is in opposition with Dempster’s rule
property (see Theorem 3.7 p. 67 in [16]) which states that
if Bel1 is Bayesian and ifBel1 andBel2 are combinable,
then Dempster’s rule provides always a Bayesian belief
function. The result of Dempster’s rule notedmDS(.) for

7i.e. the non normalized Dempster’s rule.
8In some cases, it happens that Bayesian⊕Non-Bayesian= Bayesian. For

example, withΘ = {A, B, C}, Shafer’s model,m1(A) = 0.3, m1(B) =
0.7 andm2(A) = 0.1, m2(B) = 0.2, m2(C) = 0.4 andm2(A∪B) = 0.3,
one getsmPCR5(A) = 0.2162, mPCR5(B) = 0.6134 andmPCR5(C) =
0.1704 which is a Bayesian bba.



Table II
PCR5FUSION OFBAYESIAN AND NON BAYESIAN BBA’ S.

Focal Elem. m1(.) m2(.) mDS (.) mP CR5(.)

A 0.1 0 0.0833 0.0642
B 0.2 0.3 0.1000 0.1941
C 0.7 0.2 0.8167 0.6703

A ∪ C 0 0.5 0 0.0714

this example is given in Table II for convenience. This is
the major difference between PCR5 and Dempster’s rule,
not to mention the management of conflicting information
in the fusion process of course.
In summary, and using⊕ symbol to denote the generic
fusion process, one has

– With Dempster’s rule :

Bayesian⊕ Non-Bayesian= Bayesian

– With PCR5 rule:
Bayesian⊕ Non-Bayesian= Non-Bayesian (in general)

• (P3): PCR5 Fusion of two Bayesian bba’s is a Bayesian
bba (see [18], Vol. 2, pp. 43–45 for proof).

Example:Θ = {A, B, C} with Shafer’s model and let’s
consider Bayesian bba’s given in the next Table. The
result of PCR5 fusion rule is given in the right column
of Table III. One sees thatmPCR5(.) is Bayesian since
its focal elements are singletons of the fusion space2Θ.

Table III
PCR5FUSION OF TWOBAYESIAN BBA’ S.

Focal Elem. m1(.) m2(.) mDS (.) mP CR5(.)

A 0.1 0.4 0.0870 0.2037
B 0.2 0 0 0.0567
C 0.7 0.6 0.9130 0.7396

B. A true Non Bayesian conditioning rule

Here9 we follow the footprints of Glenn Shafer in the sense
that we consider the conditioning as the result of the fusion
of any prior massm1(.) defined on2Θ with the bbam2(.)
focused on the conditional eventY 6= ∅, i.e. m2(Y ) = 1.
We however replace Dempster’s rule by the more efficient10

Proportional Conflict Redistribution rule # 5 (PCR5) given by
(4) proposed in DSmT [18]. This new conditioning rule is
not Bayesian and we use the symbol‖ (parallel) instead of
classical symbol| to avoid confusion in notations. Let’s give
the expression ofm(X ‖ Y ) resulting of the PCR5 fusion of
any prior bbam1(.) with m2(.) focused onY . Applying (4):

m(X ‖ Y ) = SPCR5
1 (X, Y ) + SPCR5

2 (X, Y ) + SPCR5
3 (X, Y ) (5)

with

SPCR5
1 (X, Y ) ,

∑

X1,X2∈2Θ

X1∩X2=X

m1(X1)m2(X2) (6)

9More sophisticated conditioning rules have been proposed in [18], Vol. 2.
10It deals better with partial conflicts than other rules unlike Dempster’s

rule, it does not increase the non-specificity of the result unlike Dubois &
Prade or Yager’s rule, and it does respond to new informationunlike Smets
rule.

SPCR5
2 (X, Y ) , m1(X)2

∑

X2∈2Θ

X∩X2=∅

m2(X2)

m1(X) + m2(X2)
(7)

SPCR5
3 (X, Y ) , m2(X)2

∑

X2∈2Θ

X∩X2=∅

m1(X2)

m2(X) + m1(X2)
(8)

wherem2(Y ) = 1 for a givenY 6= ∅.

Since Y is the single focal element ofm2(.), the term
SPCR5

1 (X, Y ) in (5) is given by
∑

X1∈2Θ

X1∩Y =X

m1(X1), the term

SPCR5
2 (X, Y ) equalsδ(X ∩ Y = ∅) · m1(X)2

1+m1(X) , and the term
SPCR5

3 (X, Y ) can be expressed depending on the value ofX
with respect to the conditioning termY :

• If X 6= Y then m2(X 6= Y ) = 0 (by definition), and
thusSPCR5

3 (X, Y ) = 0.
• If X = Y then m2(X = Y ) = 1 (by definition), and

thusSPCR5
3 (X, Y ) =

∑

X2∈2Θ

X2∩Y =∅

m1(X2)
1+m1(X2)

Finally, SPCR5
3 (X, Y ) can be written as

SPCR5
3 (X, Y ) = δ(X 6= Y ) · 0

︸ ︷︷ ︸

0

+δ(X = Y )
∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

= δ(X = Y ) ·
∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)

Finally, m(X ‖ Y ) for X 6= ∅ andY 6= ∅ are given by

m(X ‖ Y ) =
∑

X1∈2Θ

X1∩Y =X

m1(X1)+δ(X∩Y = ∅)·
m1(X)2

1 + m1(X)

+ δ(X = Y ) ·
∑

X2∈2Θ

X2∩Y =∅

m1(X2)

1 + m1(X2)
(9)

m(∅ ‖ Y 6= ∅) = 0 by definition, since PCR5 fusion doesn’t
commit mass on the empty set.m(X ‖ ∅) is kept undefined11

since it doesn’t make sense to revise a bba by an impossible
event. Based on the classical definitions ofBel(.) and Pl(.)
functions [16], one has:

Bel(X ‖ Y ) =
∑

Z∈2Θ

Z⊆X

m(Z ‖ Y ) (10)

Pl(X ‖ Y ) =
∑

Z∈2Θ

Z∩X 6=∅

m(Z ‖ Y ) (11)

The ”true” unknown (non Bayesian) conditional subjective
probability, denotedP (X ||Y ), must satisfy

Bel(X ‖ Y ) ≤ P (X ||Y ) ≤ Pl(X ||Y ) (12)

11One could also definem(∅ ‖ ∅) = 1 and m(X 6= ∅ ‖ ∅) = 0 which
however would not be a normal bba.



P (X ||Y ) can be seen as an imprecise probability and used
within IPT (Imprecise Probability Theory) [23] if necessary,
or can be approximated fromm(.||Y ) using some probabilistic
transforms, typically the pignistic transform [19] or the DSmP
transform [18] (Vol.3, Chap. 3). The search for direct close-
form expressions ofBel(X ‖ Y ) and Pl(X ‖ Y ) from
Bel1(.) andPl1(.) appears to be an open difficult problem.

IV. D ECONDITIONING

In the previous section we have proposed a new non
Bayesian conditioning rule based on PCR5. This rule follows
Shafer’s idea except that we use PCR5 instead of Dempster’s
rule because we have shown the better efficiency of PCR5
to deal with conflicting information w.r.t. other rules. In this
section, we also show the great benefit of such PCR5 rule for
the deconditioning problem. The belief conditioning problem
consists in finding a way to update any prior belief function
(Bel(.), Pl() or m(.)) with a new information related with the
(belief of) occurrence in a given conditional proposition of the
fusion space, sayY , in order to get a new belief function called
conditional belief function. The deconditioning problem is the
inverse (dual) problem of conditioning. It consists to retrieve
the prior belief function from a given posterior/conditional
belief function. Deconditioning has not been investigatedin
deep so far in the literature (to the knowledge of the authors)
since is is usually considered as impossible to achieve12,
it may present great interest for applications in advanced
information systems when only a posterior belief is available
(say provided by an human or an AI-expert system), but for
some reason we need to compute a new conditioning belief
based on a different conditional hypothesis. This motivates
our research for developing deconditioning techniques. Since
Bel(.), Pl() are in one-to-one correspondence with the basic
belief assignment (bba) massm(.), we focus our analysis on
the deconditioning of the conditional bba. More simply stated,
we want to see if for any given conditional bbam(.||Y ) we
can computem1(.) such thatm(.||Y ) = PCR5(m1(.), m2(.))
with m2(Y ) = 1 and wherePCR5(m1(.), m2(.)) denotes
the PCR5 fusion ofm1(.) with m2(.). Let’s examine the two
distinct cases for the deconditiong problem depending on the
(Bayesian or non-Bayesian) nature of the priorm1(.).

• Case of Bayesian priorm1(.): Let Θ = {θ1, θ2, . . . , θn},
with n ≥ 2, Shafer’s model, where allθi are singletons.
Let m1 : Θ 7→ [0, 1] be a Bayesian bba/mass. In that case,
the deconditioning problem admits a unique solution
and we can always computem1(.) from m(.||Y ) but
two distinct cases must be analyzed depending on the
cardinality of the conditional termY .
Case 1: When Y is a singleton, i.e.|Y | = 1. Suppose
m2(Y ) = 1, with Y = θj0 , for j0 ∈ {1, 2, . . . , n},
wherej0 is fixed. Since the bba’sm1(.) and m2(.) are
both Bayesian in this case,m(.||Y ) is also a Bayesian
bba (property P3), thereforem(θi||Y ) = ai, where all
ai ∈ [0, 1] with

∑n

i=1 ai = 1. How to find m1(.) such

12This truly happens when classical Bayes conditioning is used.

that m(.||Y ) = PCR5(m1(.), m2(.)) ? Let’s denote
m1(θi) = xi, where allxi ∈ [0, 1] and

∑n

i=1 xi = 1.
We need to find all thesexi. We now combinem1(.)
with m2(.) using PCR5 fusion rule. We transferxi, for
∀i 6= j0, to θi and θj0 proportionally with respect to
their corresponding masses,xi and 1 respectively:

wθi

xi
=

wθj0

1 = xi

xi+1 whencewθi
=

x2
i

xi+1 and wθj0
= xi

xi+1 ,

while αj0 = xj0 +
∑n

i=1
i6=j0

xi

xi+1 or αj0 = 1−
∑n

i=1
i6=j0

x2
i

xi+1 .

Since we need to find all unknownsxi, i = 1, . . . , n,
we need to solve x2

i

xi+1 = ai, for i 6= j0 for xi;
since αj0 = xj0 +

∑n
i=1
i6=j0

xi

xi+1 = aj0 , we get xj0 =

aj0 −
∑n

i=1
i6=j0

xi

xi+1 = 1 −
∑n

i=1
i6=j0

xi.

Case 2: WhenY is not a singleton, i.e.|Y | > 1 (Y can
be a partial or total ignorance). Supposem2(Y ) = 1,
with Y = θj1 ∪ θj2 ∪ . . . ∪ θjp

, where all j1, j2, . . . ,
jp are different and they belong to{1, 2, . . . , n}, 2 ≤
p ≤ n. We keep the same notations form(.||Y ) and
Bayesianm1(.). The set{j1, j2, . . . , jp} is denotedJ
for notation convenience. Similarly, using PCR5 rule we
transferxi, ∀i /∈ J , to xi and to the ignoranceY =
θj1 ∪ . . . ∪ θjp

proportionally with respect toxi and 1
respectively (as done in case 1). So,xi for i /∈ J is found
from solving the equationx2

i

xi+1 = ai, which gives13 xi =

(ai+
√

a2
i + 4ai)/2; andxjr

= ajr
for r ∈ {1, 2, . . . , p}.

• Case of Non-Bayesian priorm1(.):
Unfortunately, whenm1(.) is Non-Bayesian, the (PCR5-
based) deconditioning problem doesn’t admit one unique
solution in general (see the example 2.1 in the next
section). But the method used to decondition PCR5 when
m1(.) is Bayesian can be generalized form1(.) non-
Bayesian in the following way: 1) We need to know the
focal elements ofm1(.), then we denote the masses of
these elements by sayx1, x2, . . . ,xn; 2)Then we combine
using the conjunctive rulem1(.) with m2(Y ) = 1, where
Y can be a singleton or an ignorance; 3) Afterwards, we
use PCR5 rule and we get some results like:fi(x1, ..., xn)
for each element, wherei = 1, 2, . . .. Since we know
the results of PCR5 asm(.||Y ) = ai for each focal
element, then we form a system of non-linear equations:
fi(x1, x2, ..., xn) = ai and we need to solve it. Such
systems of equations however can admit several solutions.
We can select a solution satisfying an additional criterion
like by example the minimum (or the maximum) of
specificity depending of the kind of Non-Bayesian prior
we need to use.

V. EXAMPLES

A. Example 1: Conditioning of a Bayesian prior belief

Let’s considerΘ = {A, B, C}, Shafer’s model, and the
prior bba’s m1(.) and m′

1(.) given in Table IV and the
conditional evidenceY = A ∪ B.

13The solutionxi = (ai −
q

a2

i
+ 4ai)/2 must be discarded since it is

negative and cannot be considered as a mass of belief.



Table IV
BAYESIAN PRIORS(INPUTS).

Focal Elem. m1 m′
1(.)

A 0.49 0.01
B 0.49 0.01
C 0.02 0.98

The significance of having two cases in the Bayesian prior
case is straighforward. We just want to show that two different
priors can yield to the same posterior bba with Bayes/SCR rule
and thus we cannot retrieve these two distinct priors cases from
the posterior bba. We show that the total deconditioning is
possible however when using our non-Bayesian conditioning
rule. SCR and PCR5-based conditioning ofm1(.) andm′

1(.)
are given14 in Table V. One sees that SCR of the two distinct
bba’s m1(.) and m′

1(.) yield the same posterior/conditional
bba m(.|Y ) which means that in this very simple Bayesian
prior case, the deconditioning ofm(.|Y ) is impossible to
obtain since at least two solutions15 for the prior beliefs are
admissible. The results provided by PCR5-based conditioning
makes more sense in authors’ point of view since it better takes
into account the degree of conflicting information in the con-
ditioning process. One sees that two distinct Bayesian priors
yield two distinct posterior bba’s with PCR5-based condition-
ing. If one examines the belief and plausibility functions,one
gets, using notation∆(.|Y ) = [Bel(.|Y ), P l(.|Y )], ∆′(.|Y ) =
[Bel′(.|Y ), P l′(.|Y )], ∆(.||Y ) = [Bel(.||Y ), P l(.||Y )] and
∆′(.||Y ) = [Bel′(.||Y ), P l′(.||Y )]:

Table V
CONDITIONAL BBA ’ S.

Focal Elem. m(.|Y ) m′(.|Y ) m(.||Y ) m′(.||Y )

A 0.5 0.5 0.4900 0.0100
B 0.5 0.5 0.4900 0.0100
C 0 0 0.00039215 0.48505051

A ∪ B 0 0 0.01960785 0.49494949

Table VI
CONDITIONAL LOWER AND UPPER BOUNDS OF CONDITIONAL

PROBABILITIES

2Θ ∆(.|Y ) = ∆′(.|Y ) ∆(.||Y ) ∆′(.||Y )

∅ [0,0] [0,0] [0,0]
A [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
B [0.5,0.5] [0.4900, 0.5096] [ 0.0100, 0.5050]
C [0,0] [0.0004, 0.0004] [0.4850,0.4850]

Y = A ∪ B [1,1] [0.9996,0.9996] [0.5150,0.5150]
A ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]
B ∪ C [0.5,0.5] [ 0.4904, 0.5100] [0.4950, 0.9900]

A ∪ B ∪ C [1,1] [1,1] [1,1]

The interval∆(.|Y ) corresponds to lower and upper bounds
of conditional subjective probabilitiesP (.|Y ) and ∆(.||Y )
corresponds to lower and upper bounds ofP (.||Y ) (similarly
for ∆′(.|Y ) and∆′(.||Y )). From the Table VI, one sees that
the property P2 is verified and we get an imprecise conditional
probability. One sees that contrariwise to SCR (equivalent
to Bayes rule in this case), one getsBel(Y ||Y ) < 1 and
also Pl(Y ||Y ) < 1. ∆(.||Y ) and ∆′(.||Y ) are very different
because priors were also very different. This is an appealing

14Due to space limitation constraints, the verification is left to the reader.
15Actually an infinite number of solutions exists.

property. If one approximates16 the conditional probability by
the mid-value of their lower and upper bounds17, one gets
values given in Table VII.

Table VII
CONDITIONAL APPROXIMATE SUBJECTIVE PROBABILITIES.

2Θ P(.|Y ) = P ′(.|Y ) P(.||Y ) P ′(.||Y )

∅ 0 0 0
A 0.5 0.4998 0.2575
B 0.5 0.4998 0.2575
C 0 0.0004 0.4850

Y = A ∪ B 1 0.9996 0.5150
A ∪ C 0.5 0.5002 0.7425
B ∪ C 0.5 0.5002 0.7425

A ∪ B ∪ C 1 1 1

When the conditioning hypothesis supports the prior
belief (as for m1(.) and m2(.) which are in low conflict)
the PCR5-based conditioning reacts as SCR (as Bayes
rule when dealing with Bayesian priors) andP (X.||Y ) is
very close toP (.|Y ). When the prior and the conditional
evidences are highly conflicting (i.e. likem′

1(.) and m2(.),
PCR5-based conditioning rule is much more prudent than
Shafer’s rule and that’s why it allows the possibility to have
P (Y ||Y ) < 1. Such property doesn’t violate the fundamental
axioms (nonnegativity, unity and additivity) of Kolmogorov
axiomatic theory of probabilities and this can be verified
easily in our example. In applications, it is much better
to preserve all available information and to work directly
with conditional bba’s whenever possible rather than with
approximate subjective conditional probabilities.

The deconditioning of the posterior bba’sm(. ‖ Y ) given
in the Table V is done using the principle described in
section IV (whenm1(.) is assumed Bayesian and for case
2). We denote the unknownsm1(A) = x1, m1(B) = x2

and m1(C) = x3. SinceY = A ∪ B and J = {1, 2}, we
solve the following system of equations (with the constraint
xi ∈ [0, 1]): x1 = a1 = 0.49, x2 = a2 = 0.49 and
x2

3/(x3 + 1) = a3 = 0.00039215. Therefore, one gets
after deconditioningm1(A) = 0.49, m1(B) = 0.49 and
m1(C) = 0.02. Similarly, the deconditioning ofm′(. ‖ Y )
given in the Table V yieldsm′

1(A) = 0.01, m′
1(B) = 0.01

andm′
1(C) = 0.98.

Note that, contrariwise to Bayes or to Jeffrey’s rules [8],
[11], [21], it is possible to update the prior opinion about
an eventA even if P (A) = 0 using this Non-Bayesian rule.
For example, let’s considerΘ = {A, B, C}, Shafer’s model
and the prior Bayesian massm1(A) = 0, m1(B) = 0.3 and
m1(C) = 0.7, i.e. Bel1(A) = P1(A) = Pl(A) = 0. Assume
that the conditional evidence isY = A∪B, then one gets with
SCR m(B|A ∪ B) = 1 and with PCR5-based conditioning
m(B ‖ A ∪ B) = 0.30, m(A ∪ B ‖ A ∪ B) = 0.41176
and m(C ‖ A ∪ B) = 0.28824, which means thatP (A|A ∪
B) = 0 with SCR/Bayes rule (i.e. no update onA), whereas
[Bel(A ‖ A ∪ B), P l(A ‖ A ∪ B)] = [0, 0.41176], [Bel(B ‖

16When the lower bound is equal to the upper bound, one gets the exact
probability value.

17More sophisticated transformations could be used instead as explained in
[18], Vol. 3.



A ∪ B), P l(B ‖ A ∪ B)] = [0.30, 0.71176] and [Bel(C ‖
A ∪ B), P l(C ‖ A ∪ B)] = [0.28823, 0.28823], that isP (A ‖
A ∪ B) ∈ [0, 0.41176]. Typically, if one approximatesP (. ‖
A ∪ B) by the mid-value of its lower and upper bounds, one
will obtain P (A ‖ A ∪ B) = 0.20588 (i.e. a true update of
the prior probability ofA), P (B ‖ A ∪ B) = 0.50588 and
P (C ‖ A ∪ B) = 0.28824.

B. Example 2: Conditioning of a Non-Bayesian prior belief

Example 2.1: Let’s consider nowΘ = {A, B, C}, Shafer’s
model, the conditioning hypothesisY = A ∪ B and the
following Non-Bayesian priors:

Table VIII
NON-BAYESIAN PRIORS(INPUTS).

Focal Elem. m1 m′
1(.)

A 0.20 0.20
B 0.30 0.30
C 0.10 0.10

A ∪ B 0.25 0.15
A ∪ B ∪ C 0.15 0.25

The conflict betweenm1(.) and m2(Y ) = 1 and between
m′

1(.) and m2(Y ) = 1 is 0.10 in both cases. The results of
the conditioning are given in Table IX. One sees that when
distinct priors are Non-Bayesian, it can happen that PCR5-
based conditioning rule yields also the same posterior bba’s.
This result shows that in general with Non-Bayesian priors the
PCR5-based deconditioning cannot provide a unique solution,
unless extra information and/constraints on the prior belief are
specified as shown in the next example.

Table IX
CONDITIONAL BBA ’ S.

Focal Elem. m(.|Y ) m′(.|Y ) m(. ‖ Y ) m′(. ‖ Y )

A 0.222 0.222 0.20 0.20
B 0.333 0.333 0.30 0.30
C 0 0 0.01 0.01

A ∪ B 0.445 0.445 0.49 0.49

Example 2.2: Let’s consider nowΘ = {A, B, C, D}, Shafer’s
model, the conditional evidenceY = C ∪D and the posterior
bbam(. ‖ C∪D) given in the right column of the table below:

Table X
CONDITIONAL BBA ’ S.

Focal Elem. m1(.) mPCR5(.) m(. ‖ A)

A x1
x2
1

1+x1
0.0333

B x2
x2
2

1+x2
0.1667

C ∪ D x3 x3 +
x1

1+x1
+

x2
1+x2

0.8000

If we assume that the focal elements of the prior bbam1(.)
are the same as for the posterior bbam(. ‖ C ∪D), then with
such extra assumption, the deconditioning problem admits a
unique solution which is obtained by solving the system of
three equations according to Table X; that isx

2
1

1+x1
= 0.0333,

whencex1 ≈ 0.2; x2
2

1+x2
= 0.1667, whencex2 ≈ 0.5; x3 +

x1

1+x1
+ x2

1+x2
= 0.8000; whencex1 ≈ 0.3. Therefore, the

deconditioning ofm(. ‖ C ∪ D) provides the unique Non-
Bayesian solutionm1(A) = 0.2, m1(B) = 0.5 and m1(C ∪
D) = 0.3.

VI. CONCLUSIONS

In this paper, we have proposed a new Non-Bayesian con-
ditioning rule (denoted‖ ) based on the Proportional Conflict
Redistribution (PCR) rule of combination developed in DSmT
framework. This new conditioning rule offers the advantageto
take fully into account the level of conflict between the prior
and the conditional evidences for updating belief functions. It
is truly Non-Bayesian since it doesn’t satisfy Bayes principle
because it allowsP (X ‖ X) or Bel(X ‖ X) to be less than
one. We have also shown that this approach allows to solve
the deconditioning (dual) problem for the class of Bayesian
priors. More investigations on the deconditioning problemof
Non-Bayesian priors need to be done and comparisons of
this new rule with respect to the main alternatives of Bayes
rule proposed in the literature (typically Jeffrey’s rule and its
extensions, Planchet’s rule, etc) will be presented in details in
a forthcoming publication.
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