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Abstract—In this paper, we present a Non-Bayesian condition- to combine conflicting sources of evidentesmnd because
ing rule for belief revision. This rule is truly Non-Bayesian in  Dempster’s rule often considered as a generalization o&8ay
the sense that it doesn't satisfy the common adopted princle ;e js actually not deconditionable (see examples in the

that when a prior belief is Bayesian, after conditioning by X, - ) .
Bel(X|X) must be equal to one. Our new conditioning rule for sequel), contrariwise to PCRS, that's why we utilize PCRS.

belief revision is based on the proportional conflict redistibution ~ This paper is organized as follows. In section II, we briefly
rule of combination developed in DSmT (Dezert-Smarandache recall Dempster’s rule of combination and Shafer’s Conditi
Theory) which abandons Bayes’ conditioning principle. Sub  jng Rule (SCR) proposed in Dempster-Shafer Theory (DST)
Non-Bayesian conditioning allows to take into account judiiously of belief functions [16]. In section Ill, we introduce a new

the level of conflict between the prior belief available and . o . . .
the conditional evidence. We also introduce the deconditiong Non-Bayesian Cond|t|or?|ng rule ar_1d show its differencenwit
problem and show that this problem admits a unique solution respect to SCR. In section IV, we introduce the dual problem,
in the case of Bayesian prior; a solution which is not possiel called the deconditioning problem. Some examples are given

to obtain when classical Shafer and Bayes conditioning ruteare  n section V with concluding remarks in section VI.
used. Several simple examples are also presented to compare

the results between this new Non-Bayesian conditioning anthe
classical one.
Keywords: Belief functions, conditioning, deconditionirg, In DST, a normalized basic belief assignment (bb#))
probability, DST, DSmT, Bayes rule. is defined as a mapping from the power @ of the
finite discrete frame of discernmef into [0, 1] such that
m(0) = 0 and )"y .o m(X) = 1. Belief and plausibility
functions are in one-to-one correspondence with) and are
The question of the updating of probabilities and beIie{eSpECtﬁ/ely defined bySel(X) = 3_z¢s0.zcx m(Z) and
has yielded, and still yields, passionate philosophicad a UX) = 2 zeze gnx20m(Z). They are usually interpreted
mathematicél debates [3] [6], [7]. [9]. [12]. [13], [17]20] Us lower and upper bounds of a unknown measure of subjective

; o P LT L DT LD L ', probability P(.), i.e. Bel(X) < P(X) < Pl(X) foranyX. In
[22] in the scientific community and it arises from th ST the combination of two independent f evid

) pendent sources of evidence

different interpretations of probabilities. Such questioas haracterized byn: (.) andms(.) is done using Dempster's
been reinforced by the emergence of the possibility and tﬁﬁe as follow?: yna- 2 g P

evidence theories in the eighties [4], [16] for dealing with

Il. SHAFER'S CONDITIONING RULE

|I. INTRODUCTION

uncertain information. We cannot browse in details here all le,xzege my(X1)ma(X2)
the d_iﬁerent authors’ opinions [1]1, [2], [8], [10], [14]1.1B] mps(X) = : X1NX>=X 7 < - L
on this important question but we suggest the reader to start — 2x, x,e20 M1 (X1)ma(Xs)

with Dubois & Prade survey [5]. In this paper, we propose a X1nXa=D

true Non-Bayesian rule of combination which doesn't sgtisf Shafer's conditioning rufe(SCR) is obtained as the result
the well-adopted Bayes principle stating thatX|X) = 1 of Dempster's combination of the given prior bba,(.)
(or Bel(X|X) = 1 when working with belief functions). with the conditional evidence, sdy represented by a source
We show that by abandoning such Bayes principle, one caf}(.) only focused ony, that is such thainy(Y) = 1. In
take into account more efficiently in the conditioning preee other words,m(X|Y) = mps(X) = (m1 @ mso)(X) using

the level of the existing conflict between the prior evidenc,eig(y) = 1 and where® symbol denotes here Dempster’s
and the new conditional evidence. We show also that the
full deconditioning is pOSSible in some SpeCifiC cases. OurlDue to space Iimitation, we dolnot present’ no.r justify agM:R5 W.r.t.
approach is based on belief functions and the Proportioméler rules since this has been widely explained in thealitee with many
Conflict Redistribution (mainly PCRS5) rule of combinatiorf*@mples and discussions, see for example [18], Vol. 2. anaveb page.

. assuming that the numerator is not zero (the sources arenntital
developed in Dezert-Smarandache Theory (DSmT) framewqgfiict).

[18]. Why we use PCR5 here? Because PCRS is very efficientalso called Dempster's conditioning by Glenn Shafer in [16]



fusion rule (1). It can be shown [16] that the conditionaliéfel
and the plausibility are given By

Bely (X U }7) — Bel; (}7)

Bel(X|Y) = Y mps(Z|Y) =

e 1-— Bell(Y)
ze2
ZEX
PL(XNY) @)
PIX|Y) = Z mps(Z|Y) = ;?(Y) (3)
A

When the belief is Bayesidni.e. Bel(.|Y) = PI(.|Y) =
P(.]Y"), SCR reduces to classical conditional probability de
inition (Bayes formula), that i (X|Y) = P(XNY)/P(Y),
with P(.) = m4(.). Note that whenY” = X and as soon
as Bel(X) < 1, one always gets from (2Bel(X|X) = 1
becauseBel; (X UY) = Beli(X U X) = Bel1(0) = 1
For Bayesian belief, this implie®(X|X) = 1 for any X
such thatP; (X) > 0, which we callBayes principle Other

All fractions in (4) having zero denominators are discarded
The extension and a variant of (4) (called PCR6) for
combinings > 2 sources and for working in other fusion
spaces is presented in details in [18]. Basically, in PCRS th
partial conflicting masses are redistributed proportiyntd

the masses of the elements which are involved in the partial
conflict only, so that the specificity of the information is
entirely preserved through this fusion process. It has been
clearly shown in [18], Vol. 3, chap. 1 that Smets’ rUlis

not so useful, nor cogent because it doesn’t respond to new
information in a global or in a sequential fusion process.
i'ndeed, very quickly Smets fusion result commits the full
of mass of belief to the empty set!!! In applications, some
ad-hoc numerical techniques must be used to circumvent this
serious drawback. Such problem doesn’t occur with PCR5
rule. By construction, other well-known rules like Dubois &
Prade, or Yager’s rule, and contrariwise to PCRS5, increase
the non-specificity of the result.

alternatives have been proposed in the literature [8],,[15]
[21], but almost all of them satisfy Bayes principle and theP‘roperties of PCR5

are all somehow extensions/generalization of Bayes rule.

true Non-Bayesian conditioning (called weak conditioning

A. (PO): PCRS5 rule is not associative, but it is quasi-

associative (see [18], Vol. 2).

was however introduced by Planchet in 1989 in [14] but
it didn't bring sufficient interest because Bayes principle °
is generally considered as the best solution for probgbilit
updating based on different arguments for supporting such
idea. Such considerations didn’t dissuade us to abandoesBay
principle and to explore new Non-Bayesian ways for belief
updating, as Planchet did in nineties. We will show in next
section why Non-Bayesian conditioning can be interesting.

I1l. AN oONBAYESIAN CONDITIONING RULE

Before presenting our Non Bayesian Conditioning Rule,
it is important to recall briefly the Proportional Conflict
Redistribution Rule no. 5 (PCR5) which has been proposed
as a serious alternative of Dempster’s rule [16] in Dezert-
Smarandache Theory (DSmT) [18] for dealing with conflicting
belief functions. In this paper, we assume working in theesam
fusion space as Glenn Shafer, i.e. on the power2Seif
the finite frame of discernmer® made of exhaustive and
exclusive elements.

A. PCRS5 rule of combination

Definition: Let's m4(.) andma(.) be two independefibba’s,
then the PCR5 rule of combination is defined as follows
(see [18], Vol. 2 for details, justification and examples)emwh
working in power seR®: mpcgrs(0) = 0 andvX € 29\ {0}

mpcrs(X) = Z m1(X1)ma(X2)+
X1,X5€2°
X1NX2=X
ml(X)QmQ(XQ) mQ(X)2m1 (XQ)
ng(_) [ml (X)+ mQ(XQ) mQ(X) +my (XQ)] ()
XahX =0

4y denotes the complement &f in the frame®.

(P1): PCRS5 Fusion of two non Bayesian bba’s is a non
Bayesian bba.

Example: Conside® = {A, B, C} with Shafer's model
and with the two non Bayesian bba’s;(.) and ma(.)
given in Table I. The PCRS5 fusion result (rounded at the
fourth decimal) is given in the right column of the Table
I. One sees thatipcrs(.) in @ non Bayesian bba since
some of its focal elements are not singletons.

Table |
PCR5FUSION OF TWO NONBAYESIAN BBA’S.
Focal Elem. m1(.) mo(.) mpcRrs()
A 0.1 0.2 0.3850
B 0.2 0.1 0.1586
C 0.1 0.2 0.1990
AUB 0.3 0 0.0360
AuUcC 0 0.5 0.2214
AUBUC 0.3 0 0

(P2): PCR5 Fusion of a Bayesian bba with a non Bayesian
bba is a non Bayesian bba in genéral

Example: Conside® = {A, B,C} with Shafer's model
and Bayesian and a non Bayesian bba’f.) andma(.)

to combine as given in Table Il. The PCR5 fusion result
is given in the right column of the Table Il. One sees that
mpcrs(.) IS a non Bayesian bba since some of its focal
elements are not singletons.

This property is in opposition with Dempster's rule
property (see Theorem 3.7 p. 67 in [16]) which states that
if Bel; is Bayesian and iBel; andBel, are combinable,
then Dempster’s rule provides always a Bayesian belief
function. The result of Dempster’s rule noted,s(.) for

7i.e. the non normalized Dempster’s rule.
8ln some cases, it happens that Bayesigdon-Bayesian= Bayesian. For
example, with® = {4, B, C}, Shafer's modelm1 (A) = 0.3, m1(B)

0.7 ande(A) =0.1,m2 (B) =0.2, mg(c) =0.4 ande(AUB) =0.3,
one getSnPCR5(A) = 0.2162, mPCRE)(B) = 0.6134 andmpcrs (C) =
0.1704 which is a Bayesian bba.

Sthe focal elements ofn1 (.|Y) are singletons only.
6i.e. each source provides its bba independently of the atherces.



Table Il
PCR5FUSION OFBAYESIAN AND NON BAYESIAN BBA'S.

Focal Elem. | _my () | mg () mps () | mpors ) mQ(XQ)
A 01 0 0.0833 0.0642 SER(X,Y 2 mq(X)? 7
el n | | e FENEME” L a D rmtm O
AucC 0 05 0 00714 2€2
XNXo=0
mq X2
this example is given in Table Il for convenience. Thisis 57X, Y) £ma(X)> > ma(X) 4(_ mz(XQ) (8)
the major difference between PCR5 and Dempster’s rule, X2€2°
not to mention the management of conflicting information .XﬂXF@
in the fusion process of course. wherems(Y') = 1 for a givenY” # 0.
In summary, and using> symbol to denote the generic
fusion process, one has Since Y is the single focal element ofng(.), the term
— With Dempster's rule : ST(X,Y) in (5) is given by} y c,e mi(Xy), the term
XlﬁY X
Bayesiant Non-Bayesian= Bayesian SE(X,Y) equalsé(X NY = 0) - % and the term
— With PCR5 rule- SE(X,Y") can be expressed depending on the valueXof

with respect to the conditioning terii:
o If X £ Y thenma(X # Y) = 0 (by definition), and
« (P3): PCR5 Fusion of two Bayesian bba’s is a Bayesian thus S5*(X,Y’) =

Bayesian® Non-Bayesian= Non-Bayesian (in general)

bba (see [18], Vol. 2, pp. 43—45 for proof). o If X =Y thenma(X =Y) = l(x(t;y definition), and
. thUSS§CRs(X, Y) = Z X,e2° #&2)
Example:© = {4, B, C} with Shafer’s model and let's _ X2nY=0

consider Bayesian bba’s given in the next Table. THanlly, S5*(X,Y) can be written as

result of PCR5 fusion rule is given in the right column_,.. B m1(X2)
of Table Ill. One sees thatipcrs(.) is Bayesian since S3 (X,Y) _\5(X 7Y)- O,+5(X =Y) XZ&@ 1+ mq(Xy)
. . . e €
its focal elements are singletons of the fusion sp2fe 0 Xohy =0
Table Ill _ vy _mi(Xs)
PCRS5FUSION OF TWOBAYESIAN BBA’S. =X =Y) Z 1+mi(Xs)
FocalElem. | m1 () [ w200 [ mps | mpors() X,e2°
A 0.1 0.4 0.0870 0.2037 X2NY =0
B 0.2 0 0 0.0567
c 07 06 09130 073% Finally, m(X || Y) for X # () andY # () are given by
. I ma (X)?
B. A true Non Bayesian conditioning rule mX | Y)= > mi(X1)+6(XNY =0). HTl(X)
Here we follow the footprints of Glenn Shafer in the sense x)frlneffx
that we consider the conditioning as the result of the fusion mi(X2)
of any prior massn; (.) defined on2® with the bbam(.) +IX=Y) > T (Xa) €)
focused on the conditional evedit # 0, i.e. ma(Y) = 1. X,e2° a2
We however replace Dempster’s rule by the more effidfent X2NY=0

Proportional Conflict Redistribution rule # 5 (PCR5) given bm (0 || Y # ) = 0 by definition, since PCR5 fusion doesn't
(4) proposed in DSmT [18]. This new conditioning rule i€ommit mass on the empty set.(X || 0) is kept undefinett

not Bayesian and we use the symbjo(parallel) instead of since it doesn’t make sense to revise a bba by an impossible
classical symbo] to avoid confusion in notations. Let's giveevent. Based on the classical definitions/&f/(.) and Pi(.)

the expression ofn (X || Y) resulting of the PCR5 fusion of functions [16], one has:

any prior bbam, (.) with ms(.) focused onY. Applying (4):

Bel(X || Y)= Y m(Z|Y) (10)
m(X | Y) =ST"(X,Y) + S55(X,Y) + S5°(X,Y) (5) ze2’
ith -
" PIX V)= Y m(Z]|Y) (1)
SIT(X,Y) = Z mi (X1)ma(Xa2) (6) Z%%?Z@
f&@ggfji The "true” unknown (non Bayesian) conditional subjective

probability, denotedP(X||Y"), must satisfy
9More sophisticated conditioning rules have been propasdid], \Vol. 2.
101t deals better with partial conflicts than other rules umliRempster's BGZ(X H Y) < P(XHY) < Pl(XHY) (12)
rule, it does not increase the non-specificity of the resnolike Dubois &
Prade or Yager's rule, and it does respond to new informatidike Smets ~ 11One could also definen(( || ) = 1 andm(X # @ || #) = 0 which
rule. however would not be a normal bba.



P(X]|]Y) can be seen as an imprecise probability and used that m(.|]|Y) = PCR5(mi(.),mz2(.)) ? Let's denote
within IPT (Imprecise Probability Theory) [23] if necesgar m1(6;) = x;, where allz; € [0,1] and Y | x; = 1.

or can be approximated from(.||Y") using some probabilistic We need to find all these,;. We now combinem(.)
transforms, typically the pignistic transform [19] or th&mDP with ms(.) using PCRS5 fusion rule. We transfeg, for
transform [18] (Vol.3, Chap. 3). The search for direct close Vi # jo, to 6; and §,, proportionally with respect to
form expressions ofBel(X | Y) and PI(X | Y) from their corresponding masses, and 1 respectively:-" =
iffi wy v 22 .
Bely(.) and Ply(.) appears to be an open difficult problem. 9110 = .%o whencews, = ;% and wy, = 11;1
IV. DECONDITIONING while a;, = xj0+2?:ﬁ) T Or a, = 1—2?-;% ey
In the previous section we have proposed a new non Since we need to find all unknowns, i = 1,...,n,
Bayesian conditioning rule based on PCR5. This rule follows we need to solvemﬁ1 = a4, for ¢ # jy for x;;
Shafer’s idea except that we use PCRS instead of Dempster's since o, = xj, + > i=1 3547 = aj,, We getz;, =
rule because we have shown the better efficiency of PCR5 S m 1_-72‘):@7 .
to deal with conflicting information w.r.t. other rules. lhig 0 -22-1 zitl e

7o i#jo
section, we also show the great benefit of such PCRS5 rule for Case 2 WhenY is not a singleton, i.elY| > 1 (Y can
the deconditioning problem. The belief conditioning peshl be a partial or total ignorance). Suppose(Y) = 1,
consists in finding a way to update any prior belief function ~ With Y = 6;, U 6;, U... U 6;,, where allji, ja, ...,
(Bel(.), PI() or m(.)) with a new information related with the ~ Jp are different and they belong t01,2,...,n}, 2 <

(belief of) occurrence in a given conditional propositidtitee p < n. We keep the same notations for(.[|Y’) and
fusion space, say, in order to get a new belief function called ~ Bayesianm, (.). The set{ji,j2,...,jp} is denoted]
conditional belief function. The deconditioning problestie for notation convenience. Similarly, using PCR5 rule we
inverse (dual) problem of conditioning. It consists to iete transfera;, Vi ¢ J, to z; and to the ignorancé” —
the prior belief function from a given posterior/conditan 0j, U...U0;, proportionally with respect tar; and 1
belief function. Deconditioning has not been investigaited respectively (as done in case 1). Sofor i ¢ J is found
deep so far in the literature (to the knowledge of the audhors  from solving the equatiog% = a;, which gives$® z; =
since is is usually considered as impossible to achfeve (a;++/a? + 4a;)/2; andz;, = a;, forr € {1,2,...,p}.

it may present great interest for applications in advanced, Case of Non-Bayesian priorm; (.):

information systems when only a posterior belief is avaéab Unfortunately, whenn(.) is Non-Bayesian, the (PCR5-
(say provided by an human or an Al-expert system), but for  phased) deconditioning problem doesn’t admit one unique
some reason we need to compute a new conditioning belief sojution in general (see the example 2.1 in the next

based on a different conditional hypothesis. This motsate  section). But the method used to decondition PCR5 when

our research for developing deconditioning techniquescei m1(.) is Bayesian can be generalized for;(.) non-
Bel(.), PI() are in one-to-one correspondence with the basic  Bayesian in the following way: 1) We need to know the
belief assignment (bba) mass(.), we focus our analysis on  focal elements ofn:(.), then we denote the masses of
the deconditioning of the conditional bba. More simply stht these elements by say, s, ..., z,; 2)Then we combine
we want to see if for any given conditional bba(.|[Y") we using the conjunctive rule:; (.) with mo(Y) = 1, where
can computen, (.) such thatm(.|[Y') = PCR5(ma(.), ma(.)) Y can be a singleton or an ignorance; 3) Afterwards, we
with ms(Y) = 1 and wherePCR5(m(.), ms(.)) denotes use PCRS rule and we get some results ljkgz1, ..., ,,)
the PCRS fusion ofny(.) with mo(.). Let's examine the two for each element, where = 1,2, .... Since we know
distinct cases for the deconditiong problem depending en th  the results of PCR5 asi(.|[Y) = a; for each focal
(Bayesian or non-Bayesian) nature of the priey(.). element, then we form a system of non-linear equations:
» Case of Bayesian priorm;(.): Let® = {61,0s,...,60,}, fi(z1,29,...,z,) = a; and we need to solve it. Such
with n > 2, Shafer's model, where afl; are singletons. systems of equations however can admit several solutions.

Letm; : © — [0, 1] be a Bayesian bba/mass. In that case, We can select a solution satisfying an additional criterion
the deconditioning problem admits a unique solution like by example the minimum (or the maximum) of
and we can always compute;(.) from m(.||Y") but specificity depending of the kind of Non-Bayesian prior
two distinct cases must be analyzed depending on the we need to use.
cardinality of the conditional terny’.

Case 1 WhenY is a singleton, i.e]Y| = 1. Suppose

me(Y) = 1, with Y = 6;,, for jo € {1,2,...,n}, A. Example 1: Conditioning of a Bayesian prior belief
where jo is fixed. Since the bba'su () andms(.) are  Lets consider® = {4, B,C}, Shafer's model, and the
both Bayesian in this casey(.|[Y) is also a Bayesian prior bba’s m(.) and m/(.) given in Table IV and the
bba (property P3), therefore:(6;||Y) = a;, where all conditional evidenc& = A U B.

a; € [0,1] with Y ; a; = 1. How to find m4(.) such

V. EXAMPLES

13The solutionz; = (a; — 1/a? + 4a;)/2 must be discarded since it is
12This truly happens when classical Bayes conditioning isluse negative and cannot be considered as a mass of belief.



Table IV

BAYESIAN PRIORS(INPUTS). property. If one apprqximaté%the conditional probability by
. the mid-value of their lower and upper bouhtisone gets
Focal Elem. my m7 (.) . -
a 049 | 001 values given in Table VII.
B 0.49 0.01
C 0.02 0.98
Table VII
CONDITIONAL APPROXIMATE SUBJECTIVE PROBABILITIES
o _ ) ) ) 2® P =P (1Y) [ PCIIY) | PICIIY)
The significance of having two cases in the Bayesian prior o o5 0.4098 02575
case is straighforward. We just want to show that two diffiére ‘ & oo | oameo
priors can yield to the same posterior bba with Bayes/SCR rul Ysaos os 02005 oo
and thus we cannot retrieve these two distinct priors cases f an5Se o o0z 0142

the posterior bba. We show that the total deconditioning is

possible however when using our non-Bayesian conditioning L ) :
rule. SCR and PCR5-based conditioningrof(.) andm/(.) When the - conditioning hypothe5|s supports the. prior
are give® in Table V. One sees that SCR of the two distinéLe“ef (as form(.) and my(.) which are in low conflict)
bba's m1(.) and m/,(.) yield the same posterior/conditional"® PCR5-based conditioning reacts as SCR (as Bayes

bbam(.|Y) which means that in this very simple Bayesiaﬁule when dealing with Bayesian priors) arRi(X.||Y)_ _is
prior case, the deconditioning of.(.|Y) is impossible to V€Y close tOP('_|Y)' Wher_1 'Fhe Pr'or_a”‘f' the conditional
obtain since at least two solutidfisfor the prior beliefs are evidences are h'ghl_y c_onfhctmg_ (i-e. likex; () and maf(.),
admissible. The results provided by PCR5-based condﬁg)niPCRs'based conditioning ru-le is much more prudent than
makes more sense in authors’ point of view since it bettergakonafer's rule and that's why it allows the possibility to bav
into account the degree of conflicting information in the corfD(_Y”Y) <L Such proper_ty do%sn (tj(‘j’."_’"'?‘te thf fur|1damental
ditioning process. One sees that two distinct Bayesiarrspri(f?‘)(!()rnS _(nonnegatlwty, umty_g_n a |t|V|ty) of Ko mogaro
yield two distinct posterior bba’s with PCR5-based coruiit axiomatic theory of probabilities and this can be verified

ing. If one examines the belief and plausibility functiongge easily in our exam.ple. In applicz_altions, it is much .better
gets, using notation\(.|Y') = [Bel(.|[Y), PI(.|Y)], A/(.]Y) = to preserve all available information and to work directly
[Bel;(.|Y) PU(|Y)] A(-||Y) _ .[Bel7(.||Y.) Pl,(.||Y.)] and With conditional bba's whenever possible rather than with

. approximate subjective conditional probabilities.
A'(IY) = [Bel'(]Y), PUCIY)): PP : P
Table V The deconditioning of the posterior bbals(. | Y) given
CONDITIONAL BBA'S. in the Table V is done using the principle described in
Focal Elem. | m (1Y) | m’ (1Y) [ m(Y) [ m/(IIV) section IV (whenm(.) is assumed Bayesian and for case
A 0.5 0.5 0.4900 0.0100
B 05 05 04900 00100 2). We denote the unknownsi;(A) = x1, mi(B) = w2
C 0 0 0.00039215 0.48505051 .
AUB 0 0 0.01960785 | 0.49494949 andm,(C) = z3. SinceY = AU B andJ = {1,2}, we

solve the following system of equations (with the constrain
z; € [0,1]): 1 = a1 = 049, z2 = ay = 0.49 and

Table VI 23/(z3 + 1) = az = 0.00039215. Therefore, one gets
CONDITIONAL LOWER AND UPPER BOUNDS OF CONDITIONAL after deconditioningmi(A) = 0.49, mi(B) = 0.49 and
PROBABILITIES m1(C) = 0.02. Similarly, the deconditioning ofn/(. || Y)
© . = A/(. . /(. i 1 1 / — / —
2 ALY = A7) A0 ALY given /|n the Table V yieldsn}(A4) = 0.01, m{(B) = 0.01
: gsed o s | [a0i0 05 andm}(C) =098. ,
v_%n o) B Soveel | l0des00aesd) Note tha.t, _contranywse to Bayes or to \_]effrey_ s rules [8],
AuUucC 0.5,0.5 0.4904, 0.5100] 0.4950, 0.9900]
avo lsodl [0d90e, 051001 | [9e0, 000c0) [11], [21], it is p_ossmle to update the prior opinion about
AUBUO ) ) wy an eventA even if P(A) = 0 using this Non-Bayesian rule.

For example, let's conside® = {A, B,C}, Shafer's model

The interval A(.|Y) corresponds to lower and upper bound@nd the prior Bayesian mass, (4) = 0, mi(B) = 0.3 and
of conditional subjective probabilitie®(.|") and A([[y) "1(C) = 0.7, i.e. Beli(A) = Pi(A) = PI(A) = 0. Assume
corresponds to lower and upper boundsigt||Y) (similarly that the conditional ewdencelé_ = AUB, then one gets WI.Ih
for A’(.]Y') and A’([[Y)). From the Table VI, one sees thaoCR 7(BlA U B) = 1 and with PCR5-based conditioning
the property P2 is verified and we get an imprecise conditiodd(5 || AU B) = 0.30, m(AU B || AU B) = 0.41176
probability. One sees that contrariwise to SCR (equivaleffd™(C || AU B) = 0.28824, which means thaP’(A[A U
to Bayes rule in this case), one geBel(Y|[Y) < 1 and B) = 0 with SCR/Bayes rule (i.e. no update of), whereas
also PI(Y]]Y) < 1. A(.||Y) and A’(.||Y") are very different [Bel(A || AU B), PI(A || AU B)] = [0,0.41176], [Bel(B |
because priors were also very different. This is an appgalin 16When the lower bound is equal to the upper bound, one getsxthe

probability value.
14Due to space limitation constraints, the verification is tefthe reader. 1"More sophisticated transformations could be used insteakplained in
L5Actually an infinite number of solutions exists. [18], Vol. 3.



AUB),PIB | AU B)| = [0.30,0.71176] and [Bel(C' ||

AU B), PI(C || AU B)] = [0.28823,0.28823], that iSP(A || | this paper, we have proposed a new Non-Bayesian con-
AU B) € [0,0.41176]. Typically, if one approximates’(. || gjtioning rule (denoted ) based on the Proportional Conflict
AU B) by the mid-value of its lower and upper bounds, onRedistribution (PCR) rule of combination developed in DSmT
will obtain P(A || AU B) = 0.20588 (i.e. a true update of framework. This new conditioning rule offers the advantage
the prior probability ofA), P(B || AU B) = 0.50588 and take fully into account the level of conflict between the prio
P(C || AU B) = 0.28824. and the conditional evidences for updating belief functidn

B. Example 2: Conditioning of a Non-Bayesian prior belief!S truly Non-Bayesian since it doesn't satisfy Bayes ppiei

| , id A hafer because it allows(X || X) or Bel(X || X) to be less than
Example 2.1 Let§_co_nS| er nowd = {4, B,C}, Shafer's one. We have also shown that this approach allows to solve
model, the conditioning hypothesis = A U B and the

. . . the deconditioning (dual) problem for the class of Bayesian
following Non-Bayesian ?;L?gs\}m priors. More investigations on the deconditioning probleim

NON-BAYESIAN PRIORS(INPUTS). Non-Bayesian priors need to be done and comparisons of

this new rule with respect to the main alternatives of Bayes

VI. CONCLUSIONS

Foca Bem | iy [ i 00 rule proposed in the literature (typically Jeffrey’s ruledaits
2 R extensions, Planchet’s rule, etc) will be presented inildeita
A, povil I a forthcoming publication.
AUBUC 0.15 0.25
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