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Abstract—The Dempster-Shafer theory of belief functions has
proved to be a powerful formalism for uncertain reasoning.
However, belief functions on a finite frame of discernmentΩ
are usually defined in the power set2Ω, resulting in exponential
complexity of the operations involved in this framework, such as
combination rules. When Ω is linearly ordered, a usual trick
is to work only with intervals, which drastically reduces the
complexity of calculations. In this paper, we show that this trick
can be extrapolated to frames endowed with an arbitrary lattice
structure, not necessarily a linear order. This principle makes it
possible to apply the Dempster-Shafer framework to very large
frames such as, for instance, the power set of a finite setΩ, or
the set of partitions of a finite set. Applications to multi-label
classification and ensemble clustering are demonstrated.
Keywords: Belief functions, lattice theory, set-valued vari-
ables, conjunctive knowledge, multi-label classification,
ensemble clustering.

I. I NTRODUCTION

The theory of belief functions originates from the pio-
neering work of Dempster [1], [2] and Shafer [3]. In the
1990’s, the theory was further developed by Smets [4], [5],
who proposed a non probabilistic interpretation (referredto
as the “Transferable Belief Model”) and introduced several
new tools for information fusion and decision making. Big
steps towards the application of belief functions to real-world
problems involving many variables have been made with the
introduction of efficient algorithms for computing marginals
in valuation-based systems [6], [7].

Although there has been some work on belief functions on
continuous frames (see, e.g., [8], [9]), the theory of belief
functions has been mainly applied in the discrete setting. In
this case, all functions introduced in the theory as represen-
tations of evidence (including mass, belief, plausibilityand
commonality functions) are defined from the Boolean lattice
(2Ω,⊆) to the interval [0, 1]. Consequently, all operations
involved in the theory (such as the conversion of one form
of evidence to another, or the combination of two items of
evidence using Dempster’s rule) have exponential complexity
with respect to the cardinalityK of the frameΩ, which makes
it difficult to use the Dempster-Shafer formalism in very large
frames.

When the frameΩ is linearly ordered, a usual trick is to
constrain the focal elements (i.e., the subsets ofΩ such that

m(A) > 0) to be intervals (see, for instance, [10]). The com-
plexity of manipulating and combining mass functions is then
drastically reduced from2K to K2. As we will show, most
formula of belief function theory work for intervals, because
the set of intervals equipped with the inclusion relation has a
lattice structure. As shown recently in [11], belief functions
can be defined on any lattice, not necessarily Boolean. In
this paper, this trick will be extended to the case of frames
endowed with a lattice structure, not necessarily a linear order.
As will be shown, a lattice of intervals can be constructed, on
which belief functions can be defined. This approach makes it
possible to define belief functions on very large frames (such
as the power set of a finite setΩ, or the set of partitions of a
finite set) with manageable complexity.

The rest of this paper is organized as follows. The necessary
background on belief functions defined on lattices will firstbe
recalled in Section II. Our main idea will then be exposed in
Section III. It will be applied to define belief functions on set-
valued variables, with application to multi-label classification,
in Section IV. The second example, presented in Section V,
will concern belief functions on the set of partitions of a finite
set, with application to ensemble clustering. Section VI will
then conclude this paper.

II. B ELIEF FUNCTIONS ONGENERAL LATTICES

As shown by Grabisch [11], the theory of belief function can
be defined not only on Boolean lattices, but on any lattice, not
necessarily Boolean. We will first recall some basic definitions
about lattices. Grabisch’s results used in this work will then
be summarized.

A. Lattices

A review of lattice theory can be found in [13]. The
following presentation follows [11].

Let L be a finite set and≤ a partial ordering (i.e., a reflexive,
antisymmetric and transitive relation) onL. The structure
(L,≤) is called aposet. We say that(L,≤) is a lattice if,
for every x, y ∈ L, there is a unique greatest lower bound
(denotedx∧y) and a unique least upper bound (denotedx∨y).
Operations∧ and∨ are called themeetand join operations,
respectively. For finite lattices, the greatest element (denoted
⊤) and the least element (denoted⊥) always exist. A strict



partial ordering< is defined from≤ as x < y if x ≤ y and
x 6= y. We say thatx coversy if y < x and there is noz such
that y < z < x. An elementx of L is an atom if it covers
only one element and this element is⊥. It is a co-atomif it
is covered by a single element and this element is⊤.

Two lattices L and L′ are isomorphic if there exists a
bijective mappingf from L to L′ such thatx ≤ y ⇔ f(x) ≤
f(y). For any poset(L,≤), we can define its dual(L,≥)
by inverting the order relation. A lattice isautodual if it is
isomorphic to its dual.

A lattice is distributive if (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)
holds for allx, y, z ∈ L. For anyx ∈ L, we say thatx has a
complement inL if there existsx′ ∈ L such thatx ∧ x′ = ⊥
and x ∨ x′ = ⊤. L is said to becomplementedif any ele-
ment has a complement. Boolean lattices are distributive and
complemented lattices. Every Boolean lattice is isomorphic
to (2Ω,⊆) for some setΩ. For the lattice(2Ω,⊆), we have
∧ = ∩, ∨ = ∪, ⊥ = ∅ and⊤ = Ω.

A closure systemon a setΘ is a family C of subsets of
Θ containingΘ, and closed under intersection. As shown in
[13], any closure system(C,⊆) is a lattice with∧ = ∩ and
∨ = ⊔ defined by

A ⊔ B =
⋂

{C ∈ C|A ∪ B ⊆ C}, ∀(A,B) ∈ C2. (1)

B. Belief Functions on Lattices

Let (L,≤) be a finite poset having a least element, and let
f be a function fromL to R. The Möbius transformof f is
the functionm : L → R defined as the unique solution of the
equation:

f(x) =
∑

y≤x

m(y), ∀x ∈ L. (2)

Functionm can be expressed as:

m(x) =
∑

y≤x

µ(y, x)f(y), (3)

where µ(x, y) : L2 → R is the Möbius function, which
is uniquely defined for each poset(L,≤). The co-Möbius
transformof f is defined as:

q(x) =
∑

y≥x

m(y), (4)

andm can be recovered fromq as:

m(x) =
∑

y≥x

µ(x, y)q(y). (5)

Let us now assume that(L,≤) is a lattice. Following
Grabisch [11], a functionb : L → [0, 1] will be called an
implicability function on L if b(⊤) = 1, and its M̈obius
transform is non negative. The corresponding belief function
bel can then be defined as:

bel(x) = b(x) − m(⊥), ∀x ∈ L.

Note that Grabisch [11] considered only normal belief func-
tions, in which caseb = bel. As shown in [11], any impli-
cability function on(L,≤) is totally monotone. However, the

converse does not hold in general: a totally monotone function
may not have a non negative Möbius transform.

As shown in [11], most results of Dempster-Shafer theory
can be transposed in the general lattice setting. For instance,
the conjunctive sum between two mass functionsm1 andm2

becomes:

(m1 ∩©m2)(x) =
∑

y∧z=x

m1(y)m2(z), ∀x ∈ L, (6)

and the following relation between commonality functions still
holds:

q1 ∩©2(x) = q1(x) · q2(x), ∀x ∈ L. (7)

The normalized Dempster’s rule⊕ can still be defined, as in
the classical case, by dividing each number(m1 ∩©m2)(x) with
x 6= ⊥ by 1−(m1 ∩©m2)(⊥), provided that(m1 ∩©m2)(⊥) < 1.

Similarly, the disjunctive rule is extended by substituting ∨
for ∪ in the usual definition.

The extension of other notions from classical Dempster-
Shafer theory may require additional assumptions on(L,≤).
For instance, the definition of the plausibility functionpl as
the dual ofb can only be extended to autodual lattices [11].

III. B ELIEF FUNCTIONS WITHLATTICE INTERVALS AS

FOCAL ELEMENTS

Let Ω be a finite frame of discernment. If the cardinality
of Ω is very large, working in the Boolean lattice(2Ω,⊆)
may become intractable. This problem can be circumvented
by selecting aseventsonly a strict subset of2Ω. As shown
in Section II, the Dempster-Shafer calculus can be applied in
this restricted set of events as long as it has a lattice structure.
To be meaningful, the definition of events should be based on
some underlying structure of the frame of discernment.

When the frameΩ is linearly ordered, then a usual trick
consists in assigning non zero masses only to intervals. Here,
we propose to extend and formalize this approach, by consid-
ering the more general case whereΩ has a lattice structure
for some partial ordering≤. The set of events is then defined
as the setI of lattice intervals in(Ω,≤). We will show that
(I,⊆) is then itself a lattice, in which the Dempster-Shafer
calculus can be applied.

This lattice(I,⊆) of intervals of a lattice(Ω,≤) will first
be introduced more precisely in Section III-A. The definition
of belief functions on(I,⊆) will then be dealt with in Section
III-B.

A. The Lattice(I,⊆)

Let Ω be a finite frame of discernment, and let≤ be a
partial ordering ofΩ such that(Ω,≤) is a lattice, with greatest
element⊤ and least element⊥. A subsetI of Ω is a (lattice)
interval if there exists elementsa andb of Ω such that

I = {x ∈ Ω|a ≤ x ≤ b}.

We then denoteI as [a, b]. Obviously,Ω is the interval[⊥,⊤]
and∅ is the empty interval represented by[a, b] for anya and



b such thata ≤ b does not hold. LetI ⊆ 2Ω be the set of
intervals, including the empty set∅:

I = {[a, b]|a, b ∈ Ω, a ≤ b} ∪ {∅}.

The intersection of two intervals is an interval:

[a, b] ∩ [c, d] =

{
[a ∨ c, b ∧ d] if a ∨ c ≤ b ∧ d,

∅ otherwise.

Consequently,I is a closure system, and(I,⊆) is a lattice,
with least element∅ and greatest elementΩ. The meet
operation is the intersection, and the join operation⊔ is defined
by

[a, b] ⊔ [c, d] = [a ∧ c, b ∨ d]. (8)

Clearly,[a, b] ⊆ [a, b]⊔[c, d] and[c, d] ⊆ [a, b]⊔[c, d], hence
[a, b]∪ [c, d] ⊆ [a, b]⊔ [c, d]. We note that(I,⊆) is a subposet,
but not a sublattice of(2Ω,⊆), because they do not share the
same join operation.

The atoms of(I,⊆) are the singletons ofΩ, while the co-
atoms are intervals of the form[⊥, x], wherex is a co-atom
of (Ω,≤), or [x,⊤], wherex is an atom of(Ω,≤). The lattice
(I,⊆) is usually neither autodual, nor Boolean.

B. Belief Functions on(I,⊆)

Let m be a mass function fromI to [0, 1]. Implicability,
belief and commonality functions can be defined on(I,⊆)
as explained in Section II. Conversely,m can be recovered
from b and q using (3) and (5), where the M̈obius function
µ depends on the lattice(I,⊆). As the cardinality ofI is at
most proportional toK2, whereK is the cardinality ofΩ,
all these operations, as well as the conjunctive and disjunctive
sums can be performed in polynomial time.

Given a mass functionm on (I,⊆), we may define a
function m∗ on (2Ω,⊆) as

m∗(A) =

{
m(A) if A ∈ I,

0 otherwise.

Let b∗ andq∗ be the implicability and commonality functions
associated tom∗. It is obvious thatb∗(I) = b(I) andq∗(I) =
q(I) for all I ∈ I. Let m1 and m2 be two mass functions
on (I,⊆), and letm∗

1 andm∗
2 be their “images” in(2Ω,⊆).

Because the meet operations are identical in(I,⊆) and(2Ω,⊆
), computing the conjunctive sum in any of these two lattices
yields the same result, as we have

(m∗
1

∩©m∗
2)(A) =

{
(m1 ∩©m2)(A) if A ∈ I,

0 otherwise.

However, computing the disjunctive sum in(2Ω,⊆) or (I,⊆)
is not equivalent, because the join operation in(I,⊆), de-
fined by (8), is not identical to the union operation in2Ω.
Consequently, when computing the disjunctive sum ofm∗

1

and m∗
2, the productm∗

1(A)m∗
2(B) is transferred toA ∪ B,

whereas the productm1(A)m2(B) is transferred toA ⊔ B
when combiningm1 and m2. Let (m1 ∪©m2)

∗ be the image
of m1 ∪©m2 in (2Ω,⊆). As A ⊔ B ⊇ A ∪ B, (m1 ∪©m2)

∗

is thus anouter approximation[14], [15] of m∗
1

∪©m∗
2. When

masses are assigned to intervals of the lattice(Ω,≤), doing
the calculations in(I,⊆) can thus be see an approximation
of the calculations in(2Ω,⊆), with a loss of information only
when a disjunctive combination is performed.

IV. REASONING WITH SET-VALUED VARIABLES

In this section, we present a first application of the above
scheme to the representation of knowledge regarding set-
valued variables. The general framework will be presented in
Section IV-A, and it will be applied to multi-label classification
in Section IV-B.

A. Evidence on Set-valued Variables

Let Θ be a finite set, and letX be a variable taking values
in the power set2Θ. Such a variable is said to be set-valued,
or conjunctive[14], [16]. For instance, in diagnosis problems,
Θ may denote the set of faults that can possibly occur in a
system, andX the set of faults actually occurring at a given
time, under the assumption that multiple faults can occur. In
text classification,Θ may be a set of topics, andX the list of
topics dealt with in a given text, etc.

Defining belief functions on the lattice(22
Θ

,⊆) is practi-
cally intractable, because of the double exponential complex-
ity involved. However, we may exploit the lattice structure
induced by the ordering⊆ in Ω = 2Θ, using the general
approach outlined in Section III [17].

For any two subsetsA and B of Θ such thatA ⊆ B, the
interval [A,B] is defined as

[A,B] = {C ⊆ Θ|A ⊆ C ⊆ B}.

The set of intervals of the lattice(Ω,⊆) is thus

I = {[A,B]|A,B ∈ Ω, A ⊆ B} ∪ ∅Ω,

where ∅Ω denotes the empty sets ofΩ (as opposed to the
empty ste ofΘ). Clearly,I ⊆ 2Ω = 22

Θ

. The interval[A,B]
can be seen as the specification of an unknown subsetC of Θ
that surely contains all elements ofA, and possiblycontains
elements ofB. Alternatively,C surely containsno element of
B.

B. Multi-label Classification

In this section, we present an application of the framework
developed in this paper tomulti-label classification[18]–
[20]. In this kind of problems, each object may belong
simultaneously to several classes, contrary to standard single-
label problems where objects belong to only one class. For
instance, in image retrieval, each image may belong to several
semantic classes such as “beach” or “urban”. In such problems,
the learning task consists in predicting the value of the class
variable for a new instance, based on a training set. As the
class variable is set-valued, the framework developed in the
previous section can be applied.



1) Training Data: In order to construct a multi-label clas-
sifier, we generally assume the existence of a labeled training
set, composed ofn examples(xi, Yi), wherexi is a feature
vector describing instancei, and Yi is a label set for that
instance, defined as a subset of the setΘ of classes. In practice,
however, gathering such high quality information is not always
feasible at a reasonable cost. In many problems, there is no
ground truth for assigning unambiguously a label set to each
instance, and the opinions of one or several experts have to
be elicited. Typically, an expert will sometimes express lack
of confidence for assigning exactly one label set.

The formalism developed in this paper can easily be used
to handle such situations. In the most general setting, the
opinions of one or several experts regarding the set of classes
that pertain to a particular instancei may be modeled by a
mass functionmi in (I,⊆). A less general, but arguably more
operational option is to restrictmi to be categorical, i.e., to
have a single focal element[Ai, Bi], with Ai ⊆ Bi ⊆ Θ. The
setAi is then the set of classes thatcertainly applyto example
i, while Bi is the set of classes thatpossiblyapply to that
instance. The usual situation of precise labeling is recovered
in the special case whereAi = Bi.

2) Algorithm: The evidentialk nearest neighbor rule intro-
duced in [21] can be extended to the multi-label framework
as follows. LetΦk(x) denote the set ofk nearest neighbors
of a new instance described by feature vectorx, according to
some distance measured, andxi an element of that set with
label [Ai, Bi]. This item of evidence can be described by the
following mass function in(I,⊆):

mi([Ai, Bi]) = α exp (−γd(x,xi)) ,

mi([∅Θ,Θ]) = 1 − α exp (−γd(x,xi)) ,

whereα andγ are two parameters such that0 < α < 1. These
k mass functions are then combined using the conjunctive sum.

For decision making, the following simple and computation-
ally efficient rule can be used. Let̂Y be the predicted label
set for instancex. To decide whether to include each class
θ ∈ Θ or not, we compute the degree of beliefbel([{θ},Θ])
that the true label setY containsθ, and the degree of belief
bel([∅, {θ}]) that it does not containθ. We then definêY as

Ŷ = {θ ∈ Θ | bel([{θ},Θ]) ≥ bel([∅, {θ}])}.

3) Experiment: The emotion dataset1, presented in [19],
consist of 593 songs annotated by experts according to the
emotions they generate. There are 6 classes, and each song was
labeled as belonging to one or several classes. Each song was
also described by 8 rhythmic features and 64 timbre features,
resulting in a total of 72 features. The data was split into a
training set of 391 examples and a test set of 202 examples.

This dataset was initially constructed in such a way that
each instancei is assigned a single set of labelsYi. To
assess the performances of our approach in learning from
data with imprecise labels such as postulated in Section IV-B1

1This dataset can be downloaded from
http://mlkd.csd.auth.gr/multilabel.html.

above, werandomly simulated an imperfect labeling process
by proceeding as follows.

Let yi = (yi1, . . . , yiK) be the vector of{−1, 1}K such
that yik = 1 if θk ∈ Yi and yik = −1 otherwise. For each
instancei and each classθk, we generated a probability of
error pik ∈ [0, 0.5] by drawing2pik from a beta distribution
with parameters a = b = 0.5, and we changedyik to −yik with
probability pik, resulting in a noisy label vectory′

i. We then
defined intervals[Ai, Bi] such thatAi = {θk ∈ Θ | y′

ik =
1 andpik < 0.2} andBi = {θk ∈ Θ | y′

ik = 1 or pik ≥ 0.2}.
The intuition behind the above model may be described as

follows. Each numberpik represents the probability that the
membership of instancei to classθk will be wrongly assessed
by the expert. We assume that these numbers can be provided
by the expert as a way to describe the uncertainty of his/her
assessments, which allows us to label each instancei by a pair
of sets[Ai, Bi].

Our method (hereafter referred to as EML-kNN) was ap-
plied both with noisy labelsy′

i and with imprecise labels
[Ai, Bi]. The features were normalized so as to have zero
mean and unit variance. Parametersα and γ were fixed at
0.95 and 0.5, respectively. As a reference method, we used
the ML-kNN method introduced in [18], which was shown to
have good performances as compared to most existing multi-
label classification algorithms. The ML-kNN algorithm was
applied to noisy labels only, as it is not clear how imprecise
labels could be handled using this method.

For evaluation, we used accuracy as a performance measure,
defined as:

Accuracy =
1

n

n∑

i=1

|Yi ∩ Ŷi|

|Yi ∪ Ŷi|
,

wheren is the number of test examples,Yi is the true label
set for examplesi, and Ŷi is the predicted label set for the
same example.

Figure 1 shows the mean accuracy plus or minus one
standard deviation over five generations of noisy and imprecise
labels, with the following methods: EML-kNN with imprecise
labels [Ai, Bi], EML-kNN with noisy labels and ML-kNN
with noisy labels. The EML-kNN method with noisy labels
outperforms the ML-kNN trained using the same data, while
the EML-kNN algorithm with imprecise labels, clearly yields
the best performances, which demonstrates the benefits of
handling imprecise labels. This result was expected since our
approach takes explicitly into account the additional informa-
tion of error probabilities given by an expert.

V. BELIEF FUNCTIONS ONPARTITIONS

Ensemble clustering methods [22], [23] aim at combining
multiple clustering solutions or partitions into a single one,
offering a better description of the data. In this section,
we explain how to address this fusion problem using the
general framework developed in this paper. Each clustering
algorithm (or clusterer) can be considered as a partially reliable
source, giving an opinion about the true, unknown, partition
of the objects. This opinion provides evidence in favor of
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a set of possible partitions. Moreover, we suppose that the
reliability of each source is described by a confidence degree,
either assessed by an external agent or evaluated using a
class validity index. Manipulating beliefs defined on sets of
partitions is intractable in the usual case where the number
of potential partitions is high (for example, a set composed
of 6 elements has 203 potential partitions!) but it can be
manageable using the lattice structure of partitions, as itwill
be explained below. Note that, due to space limitations, only
the main principles will be given. More details may be found
in [24], [25].

First, basic notions about the lattice of partitions of a set
are recalled in Section V-A, then our approach is explained
and illustrated in Section V-B using a synthetic data set.

A. Lattice of Partitions

Let E denote a finite set ofn objects. A partitionp is
a set of non empty, pairwise disjoint subsetsE1,...,Ek of
E, such that their union is equal toE. Every partition p
can be associated to an equivalence relation (i.e., a reflexive,
symmetric, and transitive binary relation) onE, denoted by
Rp, and characterized, for all(x, y) ∈ E2, by:

Rp(x, y) =

{
1 if x andy belong to the same cluster inp,
0 otherwise.

The set of all partitions ofE, denotedΩ, can be partially
ordered using the following ordering relation: a partitionp is
said to befiner than a partitionp′ on the same setE (p � p′)
if the clusters ofp can be obtained by splitting those ofp′ (or
equivalently, if each cluster ofp′ is the union of some clusters
of p).

The setΩ endowed with the�-order has a lattice structure
[13]. In this lattice, the meetp∧ p′ of two partitionsp andp′,
is defined as the coarsest partition among all partitions finer
than p and p′. The clusters of the meetp ∧ p′ are obtained
by considering pairwise intersections between clusters ofp

andp′. The equivalence relationRp∧p′ is simply obtained as
the minimum of Rp and Rp′ . The join p ∨ p′ is similarly
defined as the finest partition among the ones that are coarser
thanp andp′. The equivalence relationRp∨p′ is given by the
transitive closureof the maximum ofRp and Rp′ . The least
element of the lattice⊥ is the finestpartition, denotedp0 =
(1/2/.../n), in which each object is a cluster. The greatest
element⊤ of (Ω,�) is the coarsestpartition denotedpE =
(123..n), in which all objects are put in the same cluster. In
this order, each partition precedes every partition derived from
it by aggregating two of its clusters. Similarly, each partition
covers all partitions derived by subdividing one of its clusters
in two clusters.

A closed interval ofΩ is defined as:

[p, p] = {p ∈ Ω | p � p � p}. (9)

It is a particular set of partitions, namely, the set of all
partitions finer thanp and coarser thanp.

B. Ensemble Clustering

1) Principle: We propose to use the following strategy for
ensemble clustering:

1) Mass generation: Givenr clusterers, build a collection
of r mass functionsm1, m2,..., mr on the lattice
of intervals; the way of choosing the focal elements
and allocating the masses from the results of several
clusterers depends mainly on the applicative context and
on the nature of the clusterers in the ensemble. An
example will be given in Section V-B2.

2) Aggregation: Combine ther mass functions into a
single one using the conjunctive sum. The result of this
combination is a mass functionm with focal elements
[p

k
, pk] and associated massesmk, k = 1, . . . , s. The

equivalence relations corresponding top
k

and pk will
be denotedRk andRk, respectively.

3) Decision making: Letpij denote the partition with(n−
1) clusters, in which the only objects which are clustered
together are objectsi and j (partition pij is an atom in
the lattice(Ω,�)). Then, the interval[pij , pE ] represents
the set of all partitions in which objectsi andj are put
in the same cluster. Our belief in the fact thati and
j belongs to the same cluster can be characterized by
the credibility of [pij , pE ], which can be computed as
follows:

Belij = bel([pij , pE ]) =
∑

p
k
�pij

mk =

s∑

k=1

mkRk(i, j).

(10)
Matrix Bel = (Belij) can be considered as a new
similarity matrix and can be in turn clustered using,
e.g., a hierarchical clustering algorithm. If a partition
is needed, the classification tree (dendogram) can be cut
at a specified level so as to insure a user-defined number
of clusters.
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2) Example: The data set used to illustrate the method is
the half-ring data set inspired from [26]. It consists of two
clusters of 100 points each in a two-dimensional space. To
build the ensemble, we used the fuzzyc-means algorithm with
a varying number of clusters (from 6 to 11).

Each hard partitionpl (l = 1, 6) was characterized by a
confidence degree1−αl, which was computed using a validity
index measuring the quality of the partition. Considering that
the true partition is coarser than each individual one, and
taking into account the uncertainty of the clustering process,
the following mass functions were defined:

{
ml([pl, pE ]) = 1 − αl

ml(Ω) = αl.
(11)

The six mass functions (with two focal elements each) were
then combined using the conjunctive rule of combination. A
tree was computed from matrixBel using Ward’s linkage.
This tree, represented in the left part of Figure 2, indicates
a clear separation in two clusters. Cutting the tree to obtain
two clusters yields the partition represented in the right part
of Figure 2. We can see that the natural structure of the data
is perfectly recovered.

VI. CONCLUSION

The exponential complexity of operations in the theory
of belief functions has long been seen as a shortcoming of
this approach, and has prevented its application to very large
frames of discernment. We have shown in this paper that the
complexity of the Dempster-Shafer calculus can be drastically
reduced if belief functions are defined over a subset of the
power set with a lattice structure. When the frame of discern-
ment forms itself a lattice for some partial ordering, the set of
events may be defined as the set of intervals in that lattice.
Using this method, it is possible to define and manipulate
belief functions in very large frames such as the power set
of a finite set, or the set of partitions of a set of objects. This
approach opens the way to the application of Dempster-Shafer
theory to computationally demanding Machine Learning tasks
such as multi-label classification and ensemble clustering.
Other potential applications of this framework include uncer-
tain reasoning about rankings.
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