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Abstract—The Dempster-Shafer theory of belief functions has
proved to be a powerful formalism for uncertain reasoning.
However, belief functions on a finite frame of discernmentQ
are usually defined in the power se®, resulting in exponential
complexity of the operations involved in this framework, such as
combination rules. When Q is linearly ordered, a usual trick
is to work only with intervals, which drastically reduces the
complexity of calculations. In this paper, we show that this trick
can be extrapolated to frames endowed with an arbitrary lattice
structure, not necessarily a linear order. This principle makes it
possible to apply the Dempster-Shafer framework to very large
frames such as, for instance, the power set of a finite s&?, or
the set of partitions of a finite set. Applications to multi-label
classification and ensemble clustering are demonstrated.
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m(A) > 0) to beintervals(see, for instance, [10]). The com-
plexity of manipulating and combining mass functions isnthe
drastically reduced from2* to K2. As we will show, most
formula of belief function theory work for intervals, becau
the set of intervals equipped with the inclusion relatios ha
lattice structure As shown recently in [11], belief functions
can be defined on any lattice, not necessarily Boolean. In
this paper, this trick will be extended to the case of frames
endowed with a lattice structure, not necessarily a lineden
As will be shown, a lattice of intervals can be constructed, o
which belief functions can be defined. This approach makes it
possible to define belief functions on very large framesHksuc
as the power set of a finite st or the set of partitions of a
finite set) with manageable complexity.

The rest of this paper is organized as follows. The necessary
background on belief functions defined on lattices will flist
recalled in Section Il. Our main idea will then be exposed in

The theory of belief functions originates from the pioSection Ill. It will be applied to define belief functions oats
neering work of Dempster [1], [2] and Shafer [3]. In thevalued variables, with application to multi-label clagsifion,
1990’s, the theory was further developed by Smets [4], [Sh Section IV. The second example, presented in Section V,
who proposed a non probabilistic interpretation (referted will concern belief functions on the set of partitions of atén
as the “Transferable Belief Model”) and introduced severakt, with application to ensemble clustering. Section VI wi
new tools for information fusion and decision making. Bighen conclude this paper.

steps towards the application of belief functions to reatids

problems involving many variables have been made with the 1.
introduction of efficient algorithms for computing margisa

in valuation-based systems [6], [7].

BELIEF FUNCTIONS ONGENERAL LATTICES

As shown by Grabisch [11], the theory of belief function can
be defined not only on Boolean lattices, but on any latticé, no

Although there has been some work on belief functions erecessarily Boolean. We will first recall some basic definii
continuous frames (see, e.g., [8], [9]), the theory of leli@bout lattices. Grabisch's results used in this work wilrth
functions has been mainly applied in the discrete setting. he summarized.
this case, all functions introduced in the theory as represe

tations of evidence (including mass, belief, plausibilégd

A. Lattices

commonality functions) are defined from the Boolean lattice A review of lattice theory can be found in [13]. The
(22, C) to the interval [0,1]. Consequently, all operationsfollowing presentation follows [11].

involved in the theory (such as the conversion of one form Let L be a finite set anet a partial ordering (i.e., a reflexive,
of evidence to another, or the combination of two items @ntisymmetric and transitive relation) oh. The structure

evidence using Dempster’s rule) have exponential comiylex{ L, <) is called aposet We say that(L, <) is a lattice if,

with respect to the cardinalitiy’ of the frame(2, which makes

for every z,y € L, there is a unique greatest lower bound

it difficult to use the Dempster-Shafer formalism in verygiar (denotedrAy) and a unique least upper bound (denated)).

frames.

OperationsA and Vv are called themeetand join operations,

When the frameQ is linearly ordered, a usual trick is torespectively. For finite lattices, the greatest elemenhdk

constrain the focal elements (i.e., the subset§)fuch that

T) and the least element (denoted always exist. A strict



partial ordering< is defined from< asx < y if z <y and converse does not hold in general: a totally monotone fancti

x # y. We say that: coversy if y < x and there is na such may not have a non negativediius transform.

thaty < z < x. An elementz of L is anatomif it covers As shown in [11], most results of Dempster-Shafer theory

only one element and this element.s It is a co-atomif it can be transposed in the general lattice setting. For iostan

is covered by a single element and this element s the conjunctive sum between two mass functiensandms.
Two lattices L and L’ are isomorphic if there exists a becomes:

bijective mappingf from L to L’ such thatr < y & f(z) <

f(y). For any poset(L, <), we can define its dualL,>) (mi1@mz)(z) = Z my(y)ma(z), VxeL, (6)

by inverting the order relation. A lattice igutodualif it is yAz=a

isomorphic to its dual. and the following relation between commonality functiotil s
A lattice is distributiveif (xVy)Az= (xAz)V(yAz) holds:

holds for allx,y, 2z € L. For anyz € L, we say that: has a 062(7) = q1(z) - @2(x), Va € L. @)

complement inL if there existse’ € L such thatr Az’ = L

andx V2’ = T. L is said to becomplementedf any ele- The normalized Dempster’s rule can still be defined, as in
ment has a complement. Boolean lattices are distributiek athe classical case, by dividing each number @m2)(x) with
complemented lattices. Every Boolean lattice is isomarphi: £ L by 1—(mi@ms)(L), provided tha{m@ms) (L) < 1.
to (2%, C) for some set. For the lattice(2%,C), we have  Similarly, the disjunctive rule is extended by substitgtin
A=NV=U L=0andT = Q. for U in the usual definition.

A closure systenon a set© is a family C of subsets of The extension of other notions from classical Dempster-
© containing®, and closed under intersection. As shown iShafer theory may require additional assumptiong bn<).
[13], any closure systen(C, C) is a lattice withA = N and For instance, the definition of the plausibility functigh as
Vv = U defined by the dual ofb can only be extended to autodual lattices [11].

AUB = ﬂ{C = C|A UBC C}’ V(A’B) ec 1) I11. BELIEF FUNCTIONS WITHLATTICE INTERVALS AS

B. Belief Functions on Lattices FOCAL ELEMENTS

Let (L, <) be a finite poset having a least element, and let Let Q be a finite frame of discernment. If the cardinality

f be a function fromL to R. The Mobius transformof f is ©0f & is very large, working in the Boolean lattio@®, C)
the functionm : L — R defined as the unique solution of themay become intractable. This problem can be circumvented

equation: by selecting asventsonly a strict subset 022, As shown
f(z) = Z m(y), Vze L. 2) in Section Il, the Dempster-Shafer calculus can be apphed i
y<w this restricted set of events as long as it has a latticetsimreic

To be meaningful, the definition of events should be based on

some underlying structure of the frame of discernment.

m(z) = Zu(y,x)f(y), (3)  When the frameQ is linearly ordered, then a usual trick
y<z consists in assigning non zero masses only to intervalse,Her

we propose to extend and formalize this approach, by consid-

ering the more general case whepehas a lattice structure

for some partial orderingc. The set of events is then defined

as the sefl of lattice intervals in(f2, <). We will show that

q(z) = Z m(y), (4) (Z,C) is then itself a lattice, in which the Dempster-Shafer
. calculus can be applied.

This lattice (Z, C) of intervals of a latticg(€2, <) will first

be introduced more precisely in Section IlI-A. The definitio

m(z) = Z w(z,v)q(y). (5) of belief functions onZ, C) will then be dealt with in Section
>z -B.

Let_ us now assume thatL, <) is a Ia_ttice. Following A The Lattice(Z, C)
Grabisch [11], a functiorb : L — [0,1] will be called an . .
implicability function on L if b(T) = 1, and its Mbbius L€t € be a finite frame of discernment, and Iet be a
transform is non negative. The corresponding belief fumcti Partial ordering of2 such thai((2, <) is a lattice, with greatest
bel can then be defined as: elementT and least element. A subset! of () is a (lattice)
interval if there exists elementsandb of Q such that

Functionm can be expressed as:

where u(z,y) : L?* — R is the Mobius function which
is uniquely defined for each poséL, <). The co-Mbbius
transformof f is defined as:

andm can be recovered from as:

bel(x) = b(x) —m(L), Ve L.
. . . I={zeQla<x<b}
Note that Grabisch [11] considered only normal belief func-

tions, in which casé = bel. As shown in [11], any impli- We then denotd as|a, b]. Obviously,{ is the interval[ L, T]
cability function on(L, <) is totally monotone. However, theand( is the empty interval represented fay b] for any a and



b such thata < b does not hold. LeZ C 2% be the set of is thus anouter approximatio{14], [15] of mj@m3. When
intervals, including the empty sét masses are assigned to intervals of the lattiee<), doing
the calculations inZ, C) can thus be see an approximation

T ={[a,blla;b € ©2,a < b} U {0} of the calculations 2%, C), with a loss of information only

The intersection of two intervals is an interval: when a disjunctive combination is performed.
[a,b] N [c,d] = [avebnd ifave<bad, IV. REASONING WITH SET-VALUED VARIABLES
0 otherwise.

In this section, we present a first application of the above
ConsequentlyZ is a closure system, and, C) is a lattice, scheme to the representation of knowledge regarding set-
with least element) and greatest elemer2. The meet valued variables. The general framework will be presented i
operation is the intersection, and the join operatids defined  Section IV-A, and it will be applied to multi-label classiiion
by in Section IV-B.

[a,b]Uc,d] =[aAec,bVd. (8

Clearly, [a,b] C [a,b]L[c, d] and[c, d] C [a,b]L[c, d], hence A. Evidence on Set-valued Variables

[a,b]U]c, d] C [a,b]U]c,d]. We note tha{Z, C) is a subposet, Let © be a finite set, and leX be a variable taking values
but not a sublattice of2‘?, C), because they do not share thén the power se2®. Such a variable is said to be set-valued,
same join operation. or conjunctive[14], [16]. For instance, in diagnosis problems,
The atoms of(Z, C) are the singletons df, while the co- © may denote the set of faults that can possibly occur in a
atoms are intervals of the forf, «], wherex is a co-atom system, andX the set of faults actually occurring at a given
of (2, <), or [z, T], wherez is an atom of((2, <). The lattice time, under the assumption that multiple faults can ocaur. |
(Z, Q) is usually neither autodual, nor Boolean. text classification® may be a set of topics, andl the list of
. . topics dealt with in a given text, etc.

B. Belief Functions orZ, <) Defining belief functions on the Iattic@2e7 Q) is practi-
Let m be a mass function frord to [0,1]. Implicability, cally intractable, because of the double exponential cerapl
belief and commonality functions can be defined @ C) ity involved. However, we may exploit the lattice structure
as explained in Section Il. Conversely, can be recovered jnduced by the orderingC in @ = 2°, using the general

from b and ¢ using (3) and (5), where the @bius function approach outlined in Section I1I [17].

p depends on the lattic€Z, C). As the cardinality off is at  For any two subsetsl and B of © such thatA C B, the
most proportional toK?, where K is the cardinality ofQ, interval [A, B] is defined as -

all these operations, as well as the conjunctive and disjenc

sums can be performed in polynomial time. [A,B]={C CO|ACCC B}.
Given a mass functionn on (Z,C), we may define a
functionm* on (2%, C) as The set of intervals of the lattic&?, C) is thus
m*(A) = m(A) if AeT, T =A{[A,B]|A,B e Q,AC B} Ul{q,
o otherwise.

where (), denotes the empty sets 6f (as opposed to the
Let b* andg* be the implicability and commonality functionsempty ste of®). Clearly, Z C 2% = 22°. The interval[A, B]
associated ten*. It is obvious that*(I) = b(I) andg*(I) = can be seen as the specification of an unknown subse#tO
q(I) for all I € Z. Let m; andmy be two mass functions that surely contains all elements ofl, and possiblycontains
on (Z,C), and letm} andm3 be their “images” in(2?,C). elements ofB. Alternatively,C surely containsio element of
Because the meet operations are identicdZinc) and(2%,C  B.

), computing the conjunctive sum in any of these two lattices

yields the same result, as we have B. Multi-label Classification

(m1@ms)(A) if AT, In this section, we present an application of the framework
developed in this paper tonulti-label classification[18]—
[20]. In this kind of problems, each object may belong
However, computing the disjunctive sum (@, C) or (Z,C) simultaneously to several classes, contrary to standaglesi

is not equivalent, because the join operation(ih C), de- label problems where objects belong to only one class. For
fined by (8), is not identical to the union operation 4. instance, in image retrieval, each image may belong to akver
Consequently, when computing the disjunctive sumngf semantic classes such as “beach” or “urban”. In such prahlem
and m3, the productm;(A)m5(B) is transferred toA U B, the learning task consists in predicting the value of thesla
whereas the produat; (A)m2(B) is transferred toA LI B variable for a new instance, based on a training set. As the
when combiningm; andm,. Let (m;@m2)* be the image class variable is set-valued, the framework developed én th
of miomsy in (2%,C). As ALIB D AU B, (m©Oms)* previous section can be applied.

(mi@m3)(4) = {

0 otherwise.



1) Training Data: In order to construct a multi-label clas-above, werandomly simulated an imperfect labeling process
sifier, we generally assume the existence of a labeled tiainby proceeding as follows.
set, composed of examples(x;, Y;), wherex; is a feature  Lety; = (vi1,...,yix) be the vector of{—1,1}¥ such
vector describing instanceé andY; is a label set for that thaty;, = 1 if 6, € Y; andy;, = —1 otherwise. For each
instance, defined as a subset of theef classes. In practice, instance: and each clas$,, we generated a probability of
however, gathering such high quality information is nota& error p;;, € [0,0.5] by drawing2p;; from a beta distribution
feasible at a reasonable cost. In many problems, there iswith parameters a = b = 0.5, and we changgdto —y;, with
ground truth for assigning unambiguously a label set to eaptobability p;;, resulting in a noisy label vectar;. We then
instance, and the opinions of one or several experts havedefined interval§ A;, B;] such that4d;, = {6, € © | ¥, =
be elicited. Typically, an expert will sometimes expresskla 1 andp;; < 0.2} andB; = {0 € © | y,, = 1 or p;, > 0.2}.
of confidence for assigning exactly one label set. The intuition behind the above model may be described as
The formalism developed in this paper can easily be uségllows. Each numbep;; represents the probability that the
to handle such situations. In the most general setting, theembership of instanceto classd,. will be wrongly assessed
opinions of one or several experts regarding the set of &ashy the expert. We assume that these numbers can be provided
that pertain to a particular instanéemay be modeled by a by the expert as a way to describe the uncertainty of his/her
mass functionn; in (Z, C). A less general, but arguably moreassessments, which allows us to label each instabgea pair
operational option is to restrieh; to be categorical, i.e., to of sets[A;, B;].
have a single focal elemepd;, B;], with A; C B, C ©. The Our method (hereafter referred to as ENINN) was ap-
setA; is then the set of classes thartainly applyto example plied both with noisy labelsy, and with imprecise labels
i, while B; is the set of classes thabssiblyapply to that [A;, B;]. The features were normalized so as to have zero
instance. The usual situation of precise labeling is re@e mean and unit variance. Parametersand v were fixed at
in the special case wheté; = B;. 0.95 and 0.5, respectively. As a reference method, we used
2) Algorithm: The evidentialk nearest neighbor rule intro- the ML-XNN method introduced in [18], which was shown to
duced in [21] can be extended to the multi-label framewotkave good performances as compared to most existing multi-
as follows. Let®,(x) denote the set ok nearest neighbors label classification algorithms. The MtNN algorithm was
of a new instance described by feature vestpaccording to applied to noisy labels only, as it is not clear how imprecise
some distance measugle andx; an element of that set with labels could be handled using this method.
label [A;, B;]. This item of evidence can be described by the For evaluation, we used accuracy as a performance measure,

following mass function inZ, C): defined as: R
1~ [YinY
m;i([4;, B;]) = aexp(—yd(x,%;)), Accuracy = - Z Y Uy
m;([0e,0]) = 1—aexp(—vyd(x,x;)), =

herea and~ are two parameter ch thae 1 These wheren is the number Qf test examples; is the true label
w o v Wo p S su o<t set for examples, andY; is the predicted label set for the

k mass functions are then combined using the conjunctive SU e example
For decision making, the following simple and computation- Figure 1 sh.ows the mean accuracy plus or minus one

all¥ fef:lci::]er:t r:gli c_?g dbgc:aze%hléﬁet;et;hﬁlg;z?Cé:gr:agglsstandard deviation over five generations of noisy and inipeec
setfor insta ' Fabels, with the following methods: EMENN with imprecise

{hat the e 1abel S containsd, and tne degree of beler 0% 4 1, EMLIENN with noisy labels and MUAN
bel([0, {}]) that it does not conta;iﬁ We then defind” as with noisy labels. The EMLNN method with noisy labels
’ ' outperforms the ML&NN trained using the same data, while
Y = {6 €0 | bel([{6},0]) > bel(]0, {6}])}. the EML-ENN algorithm with imprecise labels, clearly yields
) ) ] the best performances, which demonstrates the benefits of
3) Experiment: The emotion dataséf presented in [19], handling imprecise labels. This result was expected since o

consist of 593 songs annotated by experts according t0 W&, oach takes explicitly into account the additional infa-
emotions they generate. There are 6 classes, and each s8NgWa of error probabilities given by an expert.

labeled as belonging to one or several classes. Each song was
also described by 8 rhythmic features and 64 timbre features V. BELIEF FUNCTIONS ONPARTITIONS
resulting in a total of 72 features. The data was split into a
training set of 391 examples and a test set of 202 exampleiﬁ
This dataset was initially constructed in such a way th
each instance is assigned a single set of labels. To
assess the performances of our approach in learning fr
data with imprecise labels such as postulated in SectioB1lV-

Ensemble clustering methods [22], [23] aim at combining
ultiple clustering solutions or partitions into a singlaep

%“fering a better description of the data. In this section,
we explain how to address this fusion problem using the
%@heral framework developed in this paper. Each clustering
algorithm (or clusterer) can be considered as a partidligbie

1This dataset can be downloaded fromSOUrce, giving an opinion about the true, unknown, partitio

http://mkd. csd. auth. gr/multilabel.htm . of the objects. This opinion provides evidence in favor of
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Figure 1. Mean accuracy (plus or minus one standard devjatier 5

andp’. The equivalence relatioR, .,/ is simply obtained as
the minimum of R, and R,,. The joinp Vv p’ is similarly

defined as the finest partition among the ones that are coarser

thanp andp’. The equivalence relatioR,,, is given by the
transitive closureof the maximum ofR, and R,,. The least
element of the latticel is the finestpartition, denotechy =

(1/2/.../n), in which each object is a cluster. The greatest

elementT of ({2, <) is the coarsestpartition denotedhy =
(123..n), in which all objects are put in the same cluster. In
this order, each partition precedes every partition ddrfvem
it by aggregating two of its clusters. Similarly, each paoti
covers all partitions derived by subdividing one of its tduis
in two clusters.

A closed interval ofQ is defined as:

[p,p] ={p € Q|p<p =D} 9)

trials as a function of for the emotions dataset with the following methods:

EML-ENN with imprecise label§ A;, B;), EML-ENN with noisy labels and
ML-ENN with noisy labels.

It is a particular set of partitions, namely, the set of all
partitions finer tharp and coarser thap.

B. Ensemble Clustering

a set of possible partitions. Moreover, we suppose that they) principle: We propose to use the following strategy for
reliability of each source is described by a confidence dﬁgr‘lensemble clustering:

either assessed by an external agent or evaluated using
class validity index. Manipulating beliefs defined on sets o
partitions is intractable in the usual case where the number
of potential partitions is high (for example, a set composed
of 6 elements has 203 potential partitions!) but it can be

manageable using the lattice structure of partitions, &dllit

be explained below. Note that, due to space limitationsy onl
the main principles will be given. More details may be found

in [24], [25].

First, basic notions about the lattice of partitions of a set
are recalled in Section V-A, then our approach is explained

and illustrated in Section V-B using a synthetic data set.

A. Lattice of Partitions

Let £ denote a finite set ofr objects. A partitionp is
a set of non empty, pairwise disjoint subsdis,...,F; of
E, such that their union is equal t&. Every partitionp

can be associated to an equivalence relation (i.e., a neflexi

symmetric, and transitive binary relation) dn, denoted by
R,, and characterized, for allz, y) € E?, by:

Ry (o) = {

The set of all partitions offZ, denoted(2, can be partially
ordered using the following ordering relation: a partitioris
said to befiner than a partitionp’ on the same set’ (p < p’)
if the clusters ofp can be obtained by splitting those @f (or

1 if x andy belong to the same cluster in
0 otherwise.

equivalently, if each cluster gf is the union of some clusters

of p).

The set? endowed with the<-order has a lattice structure

[13]. In this lattice, the meet A p’ of two partitionsp andyp’,

is defined as the coarsest partition among all partitiong fine

thanp andp’. The clusters of the meet A p’ are obtained

by considering pairwise intersections between cluster® of

f) Mass generation: Given clusterers, build a collection
of r mass functionsm!, m?2,..., m" on the lattice

example will be given in Section V-B2.
2) Aggregation: Combine the- mass functions into a

combination is a mass functiom with focal elements
[Qk,ﬁk] and associated masses,, kK = 1,...,s. The
equivalence relations correspondinggg and p;, will
be denotedR, and Ry, respectively.

3) Decision making: Lep;; denote the partition wittin —

1) clusters, in which the only objects which are clustered

together are objectsand j (partition p;; is an atom in
the lattice((2, <)). Then, the intervallp;;, pr| represents
the set of all partitions in which objecisandj are put
in the same cluster. Our belief in the fact thatind

j belongs to the same cluster can be characterized by

the credibility of [p;;, pr]|, which can be computed as
follows:

Bel;; = bel([pij,pel) = Y mi =Y miRy(i,j).
P, ZPij k=1

(10)

of intervals; the way of choosing the focal elements
and allocating the masses from the results of several
clusterers depends mainly on the applicative context and
on the nature of the clusterers in the ensemble. An

single one using the conjunctive sum. The result of this

Matrix Bel = (Bel;;) can be considered as a new
similarity matrix and can be in turn clustered using,
e.g., a hierarchical clustering algorithm. If a partition
is needed, the classification tree (dendogram) can be cut
at a specified level so as to insure a user-defined number
of clusters.
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Figure 2. Half-rings data set. Ward's linkage computed ftBri and derived
consensus.

(7]

2) Example: The data set used to illustrate the method ig8]
the half-ring data set inspired from [26]. It consists of two g
clusters of 100 points each in a two-dimensional space. ‘Ilo
build the ensemble, we used the fuzzgneans algorithm with [10]
a varying number of clusters (from 6 to 11).

Each hard partitiorp; (I = 1,6) was characterized by a1y
confidence degreke—«;, which was computed using a validity
index measuring the quality of the partition. Consideringtt [12]
the true partition is coarser than each individual one, and
taking into account the uncertainty of the clustering pssce [13]
the following mass functions were defined:

l —1_ [14]
R

The six mass functions (with two focal elements each) wel¥!
then combined using the conjunctive rule of combination. A
tree was computed from matriBel using Ward's linkage.
This tree, represented in the left part of Figure 2, indisaté'c!
a clear separation in two clusters. Cutting the tree to obtgi7
two clusters yields the partition represented in the right p
of Figure 2. We can see that the natural structure of the d&t8l
is perfectly recovered.

VI. CONCLUSION 1]
The exponential complexity of operations in the theory
of belief functions has long been seen as a shortcoming g

this approach, and has prevented its application to vegelar
frames of discernment. We have shown in this paper that the
complexity of the Dempster-Shafer calculus can be drdktica
reduced if belief functions are defined over a subset of tf@]
power set with a lattice structure. When the frame of discern-
ment forms itself a lattice for some partial ordering, theafe oo
events may be defined as the set of intervals in that lattice.
Using this method, it is possible to define and manipulate
belief functions in very large frames such as the power sgt
of a finite set, or the set of partitions of a set of objectssThi
approach opens the way to the application of Dempster-8h
theory to computationally demanding Machine Learning $as
such as multi-label classification and ensemble clustering
Other potential applications of this framework include e&nc
tain reasoning about rankings.

%
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