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Abstract—In this paper, we consider the dominance properties cardinality k& and no focal element of cardinality k. We
of the set of the pignistic k-additive belief functions. Then, denote by*(Q) = {A C Q,|A| <k} the set of the possible
given k, we conjecture the shape of the polytope of all the 44| glements of-additive belief functions (i.e. the subsets of
k-additive belief functions dominating a given belief function, Q of si ller th | 9. Th tricted b
starting from an analogy with the case of dominating probability O Sizeé smailer than or _e_qua ) € re_s rcted number
measures. Under such Conjec’[ureywe Compute the ana|ytica|rfu of focal elements ofk-additive belief functions make them
of the barycenter of the polytope ofk-additive dominating belief convenient to deal with, as they imply less computations and
functions, and we study the location of the pignistick-additive  are easier to understand. Moreover, gikeit is known [3] that
belief functions with respect to this polytope and its barycenter.  gome subsets of the set bfadditive belief functions behave
Keywords: Belief functions, pignistic transform, pignistic  ¢om g geometrical point of view as polytopes. Of course,

k-additive belief functions, k-additive dominating belief  payesian belief functions areadditive belief functions.
functions, permutation.
Choosing the hypothesis that maximizes®<**’! is one of

. INTRODUCTION the most popular methods to make a decision [2]. Thus, the
Let Q@ = {z1,20,...,20/} be a set of hypotheses (orquestion has naturally occured to generalize it in varioagsw

events, or outcomes) of cardinalit§}|. As often stressed, [4]. Among the various generalisations, the one presemted i
(such as in [1] or [2]), manipulating belief functions &b [5] and applied to a real decision making problem in [6] abow
is not always convienient: The meaning of each focal elemdmniprecise decisions. Instead of transforming the beliatfion
in terms of mass is difficult to understand and to interpreito a 1-additive belief function (a Bayesian belief function),
the computations on the powersgt((2) are painstaking to the result is ak-additive belief function, callegignistic k-
perform, and finally decision making in a game of chance coadditive belief functionThe value oft practically corresponds
text is not trivial. This is why, it is advised in the Transibfe to the value ofy, the threshold that is used to parameterized
Belief Model [2] to convert a mass function intopagnistic  the transform. Thus, when a decision is made by choosing the
probability for decision making. The pignistic probabilityfocal elements of largest mass, the result may correspond to
function associated to a mass functioncorresponds to the singleton hypothesis or a set of several hypotheses (uy).to

following Bayesian mass function: In the first case the decision is precise, whereas, in thenseco
Berp m(A) some imprecision remains among the selected hypotheses.
mlBet ]({x}) = Z —— V{z} e {{361},...,{:c|m}}7 ) _ ) _
|A| The goal of this paper is to begin a comparative study

Aféé} of the properties of the set of pignistie-additive belief

_ Berp _ _ . (1)_ functions and the barycenters of several particular pplgaof
while m!Pe*PI(A) = 0 if A is not a singleton. The belief ;_additive belief functions, as two different but sensiblays

function b5<F1 corresponding ton!5*'*] reads: of generalizing the pignistic transform. In Section II, som
plBetP] (A) = Z m[BetP]({x}) VACQ background information is recalled, and several notatemes
- set. In Section Ill, we establish some dominance propedties

fryed the set of pignistid-additive belief functions. Then, in Section

The latter is known to correspond to the Shapley value: |y we propose a conjecture on the shape of the polytope

8]  BetP] B m(A)-|AN B of _k-additi\_/e dominating belief _functior_ls. In partic_ular, we
bH(B) =b (B) = Z IA] VB C Q. claim that its vertices are associated with permutationallof
ACQ focal elements of siz¢4| < k, even though non uniquely. In

Alternatively, k-additive belief functionsi < |Q2|) have been Section V, the analytical expression of the barycenter &f th
proposed to face the difficulties of the manipulation of gane polytope is given. Finally, a tentative comparison with et
belief functions [1]. Ak-additive belief functiorb on 2 is such of pignistic k-additive belief functions is sketched in Section
that, its mass functiom has one (or more) focal elements oiVI.



Il. BACKGROUND & NOTATIONS dominates another oneif the belief values oft’ are greater
A. The set of pignisti¢-additive belief functions than or equal to those dffor all eventsA C

First, we recall some results on the generalisation of the pi bt = b(A) <V (A) VACQ. (4)
nistic transform described in [5]. When using this transform .
the first thing the expert should do is to definenesitation 'he Set of probability measures
threshold v < ||, according to the maximum amount of Plb] = {p € P :b(A) < p(A) VA C Q} (5)
imprecision which is acceptable for the decision regardirey

constraints of his/her problem. Once the hesitatios chosen, corresponds to the set of Bayesian (or 1-additive) belief
the result of the transform, noted[fp] is definedvB c o functions more committed thah according to (4). We call

such that|B| < v as: P[b] the set of probabilities dominatiniy
- As it has been proven in [12], [13], the set of dominating

m[VGP] (B) = m(B) + Z W ) probab?lities (B)isa poly_tope, whose vertices are prdiieds
aop, Ace, 14>y NUALY) determined by permutations of the elementsof
Proposition 1: The setPb] of all the probability functions
andVB C Q such thati B| > v asml“/(B) = 0, where  consistent with a belief functioh (of massm) is the polytope
Y vy | _ P
N(AL7) =S <l;j> k=Y 1)|f||,4| — Plb) = ClLp"[b] ¥p),
k=1 k=1 ' ’ where Ci(.) denotes the convex closure operator and where

represents the number of subsetsAbbf cardinality at most p is any permutatioz ), ..., ¥, } Of the singletons of?

~, each of them being “weighted” by its cardinality. The masg: = [©2|), and the vertex”[b] is the Bayesian belief function

m(A) associated with a focal elementof cardinality|A| > such that

~ is divided into N'(|A|,~) equal parts, and these parts are .

redistributed to the(‘fo|cal) elements of cardinality v in a Pl@o) = 4 2 A ©)

manner proportional to their cardinality. A3wp(8); AFwo(3) Vi<
Let us denote byH:!(B) the mass inherited by3 from Each probability function (6) attributes to each singleton=

A, and by H,,(B) the total mass inherited bg from focal z,(;) the mass of all focal elements bfvhich contains it, but

elements of cardinality> v. Of course, we have does not contain the elements which precede the ordered
list {x ., Tp(n) } gENErated by the permutation
GP A p(1)s-++Lp(n)
H,(B) = m[v ](B) —m(B) = Z HE(B). (3) In [3], the authors consider the dominance properties of
ADB, |Al>y k-additive belief functions for any type of capacity [14].

From the definition, it is obvious that the belief functigfi”) ~ Meanwhile, they provide some results to charactefize],
[GP] the polytope oft-additive belief functions dominating another

derived from the mass functiony™ - is y-additive. Moreover, . _ . . .
we have thab'®?) — bS] ie. the pignistic transform corre- belief function. In this paper, we will formulate a conjecu
1 o on the form of B, [b] analogous to Proposition 1, and discuss

sponds to the particular case where= 1 [5]. Finally, for any . : o
. X I " the location of PBF[b] with respect to the set df-additive
belief functionb which is k-additive (eventuallyk = |2, and dominating belief fu[ng:tions andpits barycenter, for /all

thus, anyb is at least2|-additive) it is possible to define— 1

such belief functionsb[fp] with 1 <~ <k —1. This leads Ill. DOMINANCE PROPERTIES OF THE SET OF PIGNISTIC
to the definition of the set k-ADDITIVE BELIEF FUNCTIONS
_ J1[8] 1[GP] [GP] Let us start with a convenient property, which states that
PB;E[b]_{b[ I bl ,~-~,bk71,b} property

computing iteratively several pignistig-additive belief func-
so that,vy : 1 <+ < K, the~-th element of PBF[b] is a tion, with various~ is equivalent to computing directly the
~-additive belief function. We calPB.F[b] the set of pignistic one with the smallest:
k-additive belief functionsf b. Proposition 2: Let b be a k-additive belief function and

B. Dominance properties 71,72 < k. We have:

The “least commitment principle” [7] postulates that, give (b[GP]) [P — plCPl
a set of mass functions compatible with a number of con- A min(72)
straints, the most appropriate one is the “least infornsativ Proof: To show that, the simplest way is to consider the
As pointed out by Denoeux [8], in some sense it plays radistribution process in the case of two consecutive trans
role similar to that of maximum entropy in probability thgor formations with thresholds; and ~., and in the case of a
There are many ways of measuring the information content sihgle transformation with the threshaltin(~;,~2). Then, it
a belief function. This is done in practice by defining a m@artiis sufficient to check that the redistribution process ins¢he
order in the space of belief functions [9]-[11]. two scenarios leads to the same results. To do so, it is suffici
The partial order relation calledieak inclusionis defined to analyze the critical case of the redistribution of the snas
according to the notion oflominance A belief function b’ attributed to a set of cardinality v; when~v; > 7,. So, let



us considerd, a subset of2 with |A| > ~;. In both scenarios o If |A] <+, then,b[fp] (A) = b(A)=> pc4 Hy(B) > 0.
m(A) is redistributed to subsets of cardinality ;. Let us o If |A| > ~, then, B
call B any subset of2 such thaty, < |B| < 1, andC any (GP]

subset with|C/| < 2. by (4) = Z m[wGP](B) + Z m[vGP](B)
In the first scenario, a single transform & ~,) is used. Bc4, 1Blsy BCA, B>y

EachC C Q with |C| < ~, receivesdirectly a number of =0

parts of m(A) which is, by definition, proportional t¢C|: — Z (m(B) + H(B)).

HZ,(C) o |C]. In the second scenario, two transforms (first BCA, |B|<y

~ = v, and then;y = 7,) are used. After the first transform
the setsC' and B receive some part afi(A). Then, after the
second transform, the mass of the sgtss redistributed to
the setsC. As the B have received some part of(A) after
the first transform, these parts of( A) are redistributed t@”

'According to the previous notation (3), it is possible to
decomposeH,, (B) with respect to the origin of the mass
received byB from all C C 2 s.t. |C| > . Some of them
are included in4, some others are not:

after the second transform. ThuS;type sets receivelirectly H,(B)= > HYB)+ > HSY(B)
some mass fromd (first transform) but also receivadirectly CCA CZA
some mass fromd that has transited via the seis If we C1> 1G>
note H;‘;;QB(C) the mass that has transited frofn via B to  so that
C, we have that:
PN A) = > m(B) + > Y HY(B)
A—B BCA BCA CCA
H 52 (C) o< [C. |BI<~ |BI<Y [CT>
This can be verified as, first we havé: (B)  |B|, and + Z Z HS(B).
then, for eachB, Hﬁ (B) is shared and redistributed in a BCA Oz
mannerx |C|, which explains the previous equation. Hence, . |Bl<vIC1>y
C's receive fromA the mass: Now we can notice that:
> D HI(B)= ) m(B)
’y b
H$;§(0)+H§‘2(0) o |C]. BCA CCA BCA
—_——— — |BI<v [C]>y | B>~
x|C| x|C|

as the mass associated to subsetd @fith cardinality >  is
Finally, it is easy to check that, whatever the scenafie, redistributed to the subsets df with cardinality < ~. Thus,

type sets receive all the mass initially associated withso o p) B c
that it is shared among suclf's in a manner proportional to by (A= Z m(B) + Z m(B) + Z Z Hy(B)

their cardinality. Asm(A4) and the sum of all the cardinality @%{; |g|g>Av \glgéAv Igg\zﬁv
of the setsC' is determined once and for all, both scenarios
lead to the same mass redistribution. O b(4) =0
Corollary 1: Let b be a k-additive belief function. It is je. /°"(4) > b(A), andb < b7 O
possible to compute in a recursive manner all the elements of et us now summarize in a single theorem all the results
PBF[b), starting frombj"}' and finishing witho!“”1 = b[5), on the set of pignistidi-additive belief functions as well as
using decreasing values for the hesitation threshold. the consequences of these results:
Now we can study the dominating properties7aBF[b]. Theorem 1:Let b be a k-additive belief function. The
Proposition 3: Let b be a k-additive belief function (as set PBF[b] of pignistic k-additive belief functions has the
eventuallyk = |Q]), and lety < k. We have that: following properties:

1) when~ = k the transform is idle as = bLGP], while

(GP]
b by wheny = 1, we obtain the Shapley valug“”’ = p(sl;
ap) . o . t
or, in other words, they-additive pignistic transform ob ~ 2) Vv <k, b[ycp] is a~y-additive belief function;
dominatesh. 3) Vv <k, bL } dominatesb;
Proof: We need to show that/A C Q, b(A) < bi7l(4).  4) PBF[Y is unique, and giveny < k, 3! pignistic -
By definition, b(4) = Y pc,m(B) and b[7 P](A) — additive belief f%g}g]tlon which qom|natés
> ml¢P) (B). Moreover, by Equation (2), one has that: 5) vy <k, PBF[b GP] < ng:[b]’
BeA T ’ ' 6) Vo <11 <k, BTN < blSF) In particular, we have
H,(B) =ml°"(B) = m(B) > 0 if |B| <, b=bl < BT « ... < BT IO = 8l

as the termd7,,(B) correspond to some mass inherited frorfProof: 1) and 2) see [5]. 3) Proposition 3. 4) By definition
focal elements of cardinality> ~, redistributed to focal + Corollary 1. 5) Consequence o f 4. 6) Consequence of
elements of cardinalit< ~. Now: Proposition 3. |



IV. THE POLYTOPE OFk-ADDITIVE DOMINATING BELIEF
FUNCTIONS

Now, let us turn to the polytop#,[b], the polytope ofk-
additive belief functions dominating. Proposition 1 states
that the polytope of dominating probabilities (1-additbalief

functions) P[b] = B;[b] has vertices associated with permu
tations of the list of element df?. This suggests that the set
of dominatingk-additive belief functions could have a similar
form, with each vertex associated with a permutation of the

list of subsets of sizemaller than or equal td.

Conjecture 1:Given a belief functiorb : B(Q) — [0, 1],
with mass functionn, the regionB;[b] of all the k-additive
belief function$ on Q which dominateb according to order
relation (4) is the polytope:

Bilb] = CLW[B] V),

where p is any permutation{A, ), ..., A g ) Of the
subsets ofQ of size at mostk, and the vertex’[b] is the
k-additive belief function with the following mass function

mPbl(Apei)) = m(B). ()

B2Ap); BDAp) Vi<i

We illustrate the sensibility of this conjecture on a simple

example.

A. A toy example: the binary case

In the case of a binary fram& = {xz,y} the list of
subsets of size at mogt = 2 obviously reads a§3?(Q)

{{z},{y}, {z,y}}, so that the possible permutations of suct

a list are six:

p1=({z},{y}, Q)
ps = ({y}, {z}, Q)
ps = (,{z},{y})

P2 = ({.23}, Q, {y})
P4 = ({x}v Q, {y})
P6 = (97 {y}’ {l})

According to our conjecture on the nature of the verticedief t

is calledbelief spacelf we denote byb4 the categorical[2]
belief function assigning all the mass to a single subkét (2
(mp, (A) =1, mp,(B) = 0 for all B # A), the belief space
B is asimplex and each belief functioh € B can be written
as a convex sum of the vectdrg representing the categorical
belief functions as:

b= Y my(A)-ba.
PCACQ

Figure 1 depicts the belief space and polytdfgh| of the
2-additive belief functions dominating a given belief ftina

b for a frameQ of cardinality 2. Here each belief function is a
vectorb = [m(z), m(y)]" andB = Cl(b,, by, ba). As it can be
appreciated, the last vertex in (8) Bi[b] corresponds to the
original belief functionbd, while the first two are nothing but
the vertices of the sé®[b] = B5; [b] of dominating probabilities.

9)

b,=[0.17]

m(y)+m(Q)

P[b] = B,[b]
B,[b]

m(y)

be=[0,0]"

N b,=[1,0]'

m(x)+m(Q)

m(x)

Figure 1. The polytopdss[b] of the 2-additive belief functions dominating
a given belief functiorb defined on a frame of size 2. The vertices of such

polytope ofk-additive dominating belief functions (Equationgolytope meet the conjectured form (7), and are given by tsélmobability
(7)), both of the permutations in each row above generate #msignments of Equation (8).

same 2-additive belief function.
Namely, having denoted byt = [m(z), m(y), m(Q)]’ the

We can notice two facts: On one side, the conjecture

vector encoding the basic probability assignment of a belisgeems to be confirmed by the analysis of the binary case
function, the above pairs of permutations generate (by smiedn = 2. On the other side, unlike the case of dominating

of Equation (7)) the following vertices:

prpa = [m(x) +m(Q), m(y), 0]
ps;pa = [m(x),m(y) +m(2), 0] (8)
ps;ps —  [m(z),m(y), m(Q)]'

B. Geometry of3;[b] in the binary case

Given a frame of discernmeri®, a belief functionbd :
22 — [0, 1] is completely specified by it& — 2 belief values
{b(A),0 € A CQ}, N =29 and can be represented as
vector with N — 2 entries, i.e., a point R —2 [15]. The set

B of points of RY~2 which correspond to a belief function

1Formally, By [b] is the polytope of all thef-additive belief functions,

with ¢ < k, but the presence/absence of such subpolytopes, whichnire o

hyperfaces of3[b], is immaterial for a barycentre computation.

probabilities, there is no 1-1 correspondence betweelicesrt
of the polytope and the permutations of subsets, as each
vertex is produced by two different permutations. Howesér,
vertices are associated with the same number of permusation
It is sensible to conjecture that this holds in the generakca
too.

Conjecture 2:All the vertices ofB;[b] are associated with
the same number of permutations‘Bf (Q2).
;his allows to deal with the computation of the center of mass
of By [b] in a straightforward manner.

V. THE BARYCENTER OF THE SET OF-ADDITIVE
DOMINATING BELIEF FUNCTIONS

We first go through the (already known) computation of the
barycenter of the polytop@[b] of dominating probabilities



(1-additive belief functions), in a way that can be genesali which, after recalling that

to k-additive belief functions. Then, we will move to that of Q|—|B|+1

By.[b], following a similar proof. <Q| - Z) _ (|Q|)
A. The barycenter of dominating probabilities i=1 Bl -1 Bl
If we use the shorthand notatigfip for the cardinality of becomes
the set of the permutationsof (2, the center of mas®[b] of (= 1BPMBI =D /1Q 1
P[b] is given by - Q! |B|) — |B|’
p°[0]

Z #p As a consequenc@[b] corresponds to the pignistic probability
4 mlBetP] [2], as:

which, by Equation (6), corresponds to a Bayesian mass m(B)

function which assigns to any focal elemdnt} the value > B mlBetPl (). (10)

B #p: Vo' <,z:Bp{a'} B2{z}
Bg{:}m( ) #p ' B. The case of dominating-additive belief functions

h , indi haty! bef in the li The proof of the analytical form of the center of mass
wherez’ <, x Indicates thatr’ comes beforer in the st B ot 15 1) follows the one given for the barycenter
of elements associated with the permutatijonTo simplify PJb] = BetP[b] of P[b. Let us denote by
this expression, we need to compute for each singleton foca[l ’ '

elementB D {z} the number of permutations of Q such & 19
that B does not include any singletari which comes before M9, k) = Z < ; )
x (z' <, x) in the associated listz (1), ..., (o)) }- =1

For all possible positions af in the list, the permutation the number of non-empty subsets of size at mosh |Q2|.
must be such that all elements befarare extracted fron¢, Note that

the complement oB. In any admissible permutationm,has to b
appear in one of the fir$f2| — | B| + 1 locations (as otherwise M(a,b) # N(a,b) = Z ( > i,
some other elements &f would come before in the list). For i=1

each position of z, the number of admissible permutations igs in the definition of\” the contribution of each focal element
given by the possible dispositionse b Zio of (2] = is weighted by its cardinality. Under the assumption that
|B|) points (the elements @8°) in :—1 locations (the elements Conjectures 1 and 2 are true, the barycenteBgb] is

of the list beforez), multiplied by the numbef|2| — 7)! of b [b]

permutations of the remaining — i singletons, which can Z—

appear afters in any order. P

Then, P[] is given by a mass function which assigns tg Equation (6) this corresponds to a mass function which

{z} the value: assigns to each focal element |A| < k the value:
12|-|B|+1

(21— 1B)t (12— #p:VA <, A:BBA

> omB) > : . > m(B) . (11)

ST e TR e G VI ] = #o

We can further simplify the multiplicative coefficient of(B) Again the coefficient ofm(B) in the above equation is

in the above expression, as follows: proportional to the number of permutatiopof *(Q2) such
Q1= B|+1 _ that B does not contain any element @f*(Q2) that comes

(122 =[B! (2] —a)! before A in the permutation.

— (2= [B))-@GE-D]t | In the present case, there avé(|Q|, k) elements ir3* (€2).

|Ql—|B|+1 (19 - 1B))! (19| - i)! Of these M (|Q2], k) — M(|B|, k) are not included inB. Let
= - - ' ' - I = |B|. As before, for each position of A, the number of

| ‘i‘:l‘ (el =9 - (B[ -1 |af admissible permutations is given by the possible dispmsti

Q|- |B|+1

(12 = |B])! (|B] = 1! (]2 —4)! (M(n, k) — M(1, k))!
— [ =9 - (B[-D] (B[ -1 [Qf [(M(n, k) — M(1L, k) — (i — 1)]!
(1€l - |B|)’('|B| —1)! of the M(n, k) — M(l, k) subsets of size< k which are

>

m\—\m‘ﬁ' not included inB overi — 1 locations (the elements of the
(192] —)! list before A), multiplied by the numbefM(n, k) —i)! of
x — [(192] —4) — (|B| — D)]Y(|B] — 1)! permutations of the remaininyy(n, k) —i elements ofg*(Q),
= || |B|+1 . which can appear afted in any order.
_ (e =1BptiBl =1 (|Q - Z) The same derivations of Section V-A hold then for the case
! =1 Bl -1)’ of dominatingk-additive belief functions too, when we replace



|| with M(|?], k) and|B| with M(|B|, k). Therefore, the basic probability assignment.. Such difference vector will

multiplicative coefficient ofm(B) in Equation (11) turn out therefore be expressed as:
to be —+—. This leads to the following theorem: [GP) [CM]
M(,R) — ~ba.

Theorem 2:1f Conjectures 1 and 2 hold, given a belief A Z;Q (my " (A) =y, (A)) - ba
function b : 2© — [0, 1] of mass functionm, the center of ¥ _( )_ o _
massB;, [b] of the polytopeB;, [b] of ¢-additive belief functions The study of this d|1_‘ference is _Ilke_ly t(_) shed some I|ght_oe th
dominatingb (v/ < k) is given by the mass functiom €M nature of the two different redistribution processes getirey
= 'k

which reads mECGP] and mLCM], and will be pursued in the near future.
, VII. CONCLUSIONS
[CM] _ 1 k
my (4) = Z m(B)M(\BLk)’ v4 € F(Q)12) In this paper, we investigated some dominance properties

B4 of the set of pignistick-additive belief functions. In parallel,

mLCM] (A) = 0  otherwise (13) we proposed two natural conjectures on the set of dominating
ik k-additive belief functions, inspired by the case of domiimat
where./\/l(|B|,k) = B @) probabilities. Surprisingly, the associated baryceatarialyt-
Proof: see above

) . . ical form is very simple and elegant in terms of degrees
At this point, let us stress to two important factsmtc M, y P 9 9

First, as expected, fok — 1, the expression (12) reduces toof belief and mass redistribution. This led to the definition
the one of the pignistic function (10), singel(|B|.1) — | B of another, “geometrical” set of pignisti¢-additive belief

Moreover, the interpretation of the barycenter (12) of thieo$ Lljqutgr}z'nﬁt;%r:?ﬁ;ﬁé qlétlastt(ljon;s @2252%\';2%5::3/ ]?uf ntgt?::StW
k-additive dominating belief functions is straightforwarkis polytop

the pianistic function is the result of a redistribution S naturally arise and need to be answered in the near futuee. Th
the pig . PESS hext natural step along this line of research will be the farm
in which the mass of each focal element is re-assigoed

. . ) . proof of two conjectures, following the intuition provid
an equal basisamong its elements (size 1 subsets), Equati Re case of dom{nating probabiliti%s P &y
(12) represents an analogous redistribution process ichwhi '

the mass of each focal elements is re-assigneehch subset REFERENCES
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