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Abstract—In this paper, we consider the dominance properties
of the set of the pignistic k-additive belief functions. Then,
given k, we conjecture the shape of the polytope of all the
k-additive belief functions dominating a given belief function,
starting from an analogy with the case of dominating probability
measures. Under such conjecture, we compute the analytical form
of the barycenter of the polytope ofk-additive dominating belief
functions, and we study the location of the pignistick-additive
belief functions with respect to this polytope and its barycenter.
Keywords: Belief functions, pignistic transform, pignistic
k-additive belief functions, k-additive dominating belief
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I. I NTRODUCTION

Let Ω = {x1, x2, . . . , x|Ω|} be a set of hypotheses (or
events, or outcomes) of cardinality|Ω|. As often stressed,
(such as in [1] or [2]), manipulating belief functions onΩ
is not always convienient: The meaning of each focal element
in terms of mass is difficult to understand and to interpret,
the computations on the powersetP(Ω) are painstaking to
perform, and finally decision making in a game of chance con-
text is not trivial. This is why, it is advised in the Transferable
Belief Model [2] to convert a mass function into apignistic
probability for decision making. The pignistic probability
function associated to a mass functionm corresponds to the
following Bayesian mass function:

m[BetP ]({x}) =
∑

A3{x}
A⊆Ω

m(A)

|A|
∀{x} ∈

{
{x1}, . . . , {x|Ω|}

}
,

(1)
while m[BetP ](A) = 0 if A is not a singleton. The belief
function b[BetP ] corresponding tom[BetP ] reads:

b[BetP ](A) =
∑

{x}∈A

m[BetP ]({x}) ∀A ⊆ Ω.

The latter is known to correspond to the Shapley value:

b[S](B) = b[BetP ](B) =
∑

A⊆Ω

m(A) · |A ∩ B|

|A|
∀B ⊆ Ω.

Alternatively, k-additive belief functions (k ≤ |Ω|) have been
proposed to face the difficulties of the manipulation of generic
belief functions [1]. Ak-additive belief functionb onΩ is such
that, its mass functionm has one (or more) focal elements of

cardinality k and no focal element of cardinality> k. We
denote byPk(Ω) = {A ⊆ Ω, |A| ≤ k} the set of the possible
focal elements ofk-additive belief functions (i.e. the subsets of
Ω of size smaller than or equal tok). The restricted number
of focal elements ofk-additive belief functions make them
convenient to deal with, as they imply less computations and
are easier to understand. Moreover, givenk, it is known [3] that
some subsets of the set ofk-additive belief functions behave
from a geometrical point of view as polytopes. Of course,
Bayesian belief functions are1-additive belief functions.

Choosing the hypothesis that maximizesm[BetP ] is one of
the most popular methods to make a decision [2]. Thus, the
question has naturally occured to generalize it in various ways
[4]. Among the various generalisations, the one presented in
[5] and applied to a real decision making problem in [6] allows
imprecise decisions. Instead of transforming the belief function
into a 1-additive belief function (a Bayesian belief function),
the result is ak-additive belief function, calledpignistic k-
additive belief function. The value ofk practically corresponds
to the value ofγ, the threshold that is used to parameterized
the transform. Thus, when a decision is made by choosing the
focal elements of largest mass, the result may correspond toa
singleton hypothesis or a set of several hypotheses (up toγ).
In the first case the decision is precise, whereas, in the second,
some imprecision remains among the selected hypotheses.

The goal of this paper is to begin a comparative study
of the properties of the set of pignistick-additive belief
functions and the barycenters of several particular polytopes of
k-additive belief functions, as two different but sensible ways
of generalizing the pignistic transform. In Section II, some
background information is recalled, and several notationsare
set. In Section III, we establish some dominance propertiesof
the set of pignistick-additive belief functions. Then, in Section
IV, we propose a conjecture on the shape of the polytope
of k-additive dominating belief functions. In particular, we
claim that its vertices are associated with permutations ofall
focal elements of size|A| ≤ k, even though non uniquely. In
Section V, the analytical expression of the barycenter of this
polytope is given. Finally, a tentative comparison with theset
of pignistic k-additive belief functions is sketched in Section
VI.



II. BACKGROUND & NOTATIONS

A. The set of pignistick-additive belief functions

First, we recall some results on the generalisation of the pig-
nistic transform described in [5]. When using this transform,
the first thing the expert should do is to define ahesitation
threshold γ ≤ |Ω|, according to the maximum amount of
imprecision which is acceptable for the decision regardingthe
constraints of his/her problem. Once the hesitationγ is chosen,
the result of the transform, notedm[GP ]

γ is defined,∀B ⊆ Ω
such that|B| ≤ γ as:

m[GP ]
γ (B) = m(B) +

∑

A⊃B, A⊆Ω, |A|>γ

m(A) · |B|

N (|A|, γ)
(2)

and∀B ⊆ Ω such that|B| > γ asm
[GP ]
γ (B) = 0, where

N (|A|, γ) =

γ
∑

k=1

(
|A|

k

)

· k =

γ
∑

k=1

|A|!

(k − 1)!(|A| − k)!

represents the number of subsets ofA of cardinality at most
γ, each of them being “weighted” by its cardinality. The mass
m(A) associated with a focal elementA of cardinality |A| >

γ is divided intoN (|A|, γ) equal parts, and these parts are
redistributed to the focal elements of cardinality≤ γ in a
manner proportional to their cardinality.

Let us denote byHA
γ (B) the mass inherited byB from

A, and byHγ(B) the total mass inherited byB from focal
elements of cardinality> γ. Of course, we have

Hγ(B) = m[GP ]
γ (B) − m(B) =

∑

A⊃B, |A|>γ

HA
γ (B). (3)

From the definition, it is obvious that the belief functionb
[GP ]
γ

derived from the mass functionm[GP ]
γ is γ-additive. Moreover,

we have thatb[GP ]
1 = b[S], i.e. the pignistic transform corre-

sponds to the particular case whereγ = 1 [5]. Finally, for any
belief functionb which isk-additive (eventually,k = |Ω|, and
thus, anyb is at least|Ω|-additive) it is possible to definek−1

such belief functionsb[GP ]
γ with 1 ≤ γ ≤ k − 1. This leads

to the definition of the set

PBF [b] =
{

b[S], b
[GP ]
2 , · · · , b

[GP ]
k−1 , b

}

so that,∀γ : 1 ≤ γ < K, the γ-th element ofPBF [b] is a
γ-additive belief function. We callPBF [b] theset of pignistic
k-additive belief functionsof b.

B. Dominance properties

The “least commitment principle” [7] postulates that, given
a set of mass functions compatible with a number of con-
straints, the most appropriate one is the “least informative”.
As pointed out by Denoeux [8], in some sense it plays a
role similar to that of maximum entropy in probability theory.
There are many ways of measuring the information content of
a belief function. This is done in practice by defining a partial
order in the space of belief functions [9]–[11].

The partial order relation calledweak inclusionis defined
according to the notion ofdominance: A belief function b′

dominates another oneb if the belief values ofb′ are greater
than or equal to those ofb for all eventsA ⊆ Ω

b � b′ ≡ b(A) ≤ b′(A) ∀A ⊆ Ω. (4)

The set of probability measures

P[b] =
{
p ∈ P : b(A) ≤ p(A) ∀A ⊆ Ω

}
(5)

corresponds to the set of Bayesian (or 1-additive) belief
functions more committed thanb according to (4). We call
P[b] the set of probabilities dominatingb.

As it has been proven in [12], [13], the set of dominating
probabilities (5) is a polytope, whose vertices are probabilities
determined by permutations of the elements ofΩ.

Proposition 1: The setP[b] of all the probability functions
consistent with a belief functionb (of massm) is the polytope

P[b] = Cl(pρ[b] ∀ρ),

whereCl(.) denotes the convex closure operator and where
ρ is any permutation{xρ(1), ..., xρ(n)} of the singletons ofΩ
(n = |Ω|), and the vertexpρ[b] is the Bayesian belief function
such that

pρ[b](xρ(i)) =
∑

A3xρ(i); A 63xρ(j) ∀j<i

m(A). (6)

Each probability function (6) attributes to each singletons x =
xρ(i) the mass of all focal elements ofb which contains it, but
does not contain the elements which precedex in the ordered
list {xρ(1), ..., xρ(n)} generated by the permutationρ.

In [3], the authors consider the dominance properties of
k-additive belief functions for any type of capacity [14].
Meanwhile, they provide some results to characterizeBk[b],
the polytope ofk-additive belief functions dominating another
belief function. In this paper, we will formulate a conjecture
on the form ofBk[b] analogous to Proposition 1, and discuss
the location ofPBF [b] with respect to the set ofk-additive
dominating belief functions and its barycenter, for allk.

III. D OMINANCE PROPERTIES OF THE SET OF PIGNISTIC

k-ADDITIVE BELIEF FUNCTIONS

Let us start with a convenient property, which states that
computing iteratively several pignisticγ-additive belief func-
tion, with variousγ is equivalent to computing directly the
one with the smallestγ:

Proposition 2: Let b be a k-additive belief function and
γ1, γ2 < k. We have:

(

b[GP ]
γ1

)[GP ]

γ2

= b
[GP ]
min(γ1,γ2)

Proof: To show that, the simplest way is to consider the
redistribution process in the case of two consecutive trans-
formations with thresholdsγ1 and γ2, and in the case of a
single transformation with the thresholdmin(γ1, γ2). Then, it
is sufficient to check that the redistribution process in these
two scenarios leads to the same results. To do so, it is sufficient
to analyze the critical case of the redistribution of the mass
attributed to a set of cardinality> γ1 when γ1 > γ2. So, let



us considerA, a subset ofΩ with |A| > γ1. In both scenarios
m(A) is redistributed to subsets of cardinality≤ γ1. Let us
call B any subset ofΩ such thatγ2 < |B| ≤ γ1, andC any
subset with|C| ≤ γ2.

In the first scenario, a single transform (γ = γ2) is used.
Each C ⊆ Ω with |C| ≤ γ2 receivesdirectly a number of
parts of m(A) which is, by definition, proportional to|C|:
HA

γ2
(C) ∝ |C|. In the second scenario, two transforms (first

γ = γ1, and then,γ = γ2) are used. After the first transform,
the setsC andB receive some part ofm(A). Then, after the
second transform, the mass of the setsB is redistributed to
the setsC. As theB have received some part ofm(A) after
the first transform, these parts ofm(A) are redistributed toC
after the second transform. Thus,C-type sets receivedirectly
some mass fromA (first transform) but also receiveindirectly
some mass fromA that has transited via the setsB. If we
noteHA→B

γ1,γ2
(C) the mass that has transited fromA, via B to

C, we have that:

HA→B
γ1,γ2

(C) ∝ |C|.

This can be verified as, first we haveHA
γ1

(B) ∝ |B|, and
then, for eachB, HA

γ1
(B) is shared and redistributed in a

manner∝ |C|, which explains the previous equation. Hence,
C ’s receive fromA the mass:

(

HA→B
γ1,γ2

(C)
︸ ︷︷ ︸

∝|C|

+HA
γ2

(C)
︸ ︷︷ ︸

∝|C|

)

∝ |C|.

Finally, it is easy to check that, whatever the scenario,C-
type sets receive all the mass initially associated withA, so
that it is shared among suchC ’s in a manner proportional to
their cardinality. Asm(A) and the sum of all the cardinality
of the setsC is determined once and for all, both scenarios
lead to the same mass redistribution. �

Corollary 1: Let b be a k-additive belief function. It is
possible to compute in a recursive manner all the elements of
PBF [b], starting fromb

[GP ]
k−1 and finishing withb

[GP ]
1 = b[S],

using decreasing values for the hesitation threshold.
Now we can study the dominating properties ofPBF [b].

Proposition 3: Let b be a k-additive belief function (as
eventuallyk = |Ω|), and letγ < k. We have that:

b � b[GP ]
γ

or, in other words, theγ-additive pignistic transform ofb
dominatesb.
Proof: We need to show that,∀A ⊆ Ω, b(A) ≤ b

[GP ]
γ (A).

By definition, b(A) =
∑

B⊆A m(B) and b
[GP ]
γ (A) =

∑

B⊆A m
[GP ]
γ (B). Moreover, by Equation (2), one has that:

Hγ(B) = m[GP ]
γ (B) − m(B) > 0 if |B| ≤ γ,

as the termsHγ(B) correspond to some mass inherited from
focal elements of cardinality> γ, redistributed to focal
elements of cardinality≤ γ. Now:

◦ If |A| ≤ γ, then,b[GP ]
γ (A) − b(A) =

∑

B⊆A Hγ(B) > 0.
◦ If |A| > γ, then,

b[GP ]
γ (A) =

∑

B⊆A, |B|≤γ

m[GP ]
γ (B) +

∑

B⊆A, |B|>γ

m[GP ]
γ (B)

︸ ︷︷ ︸

=0

=
∑

B⊆A, |B|≤γ

(m(B) + Hγ(B)) .

According to the previous notation (3), it is possible to
decomposeHγ(B) with respect to the origin of the mass
received byB from all C ⊆ Ω s.t. |C| > γ. Some of them
are included inA, some others are not:

Hγ(B) =
∑

C⊆A
|C|>γ

HC
γ (B) +

∑

C 6⊂A
|C|>γ

HC
γ (B)

so that

b[GP ]
γ (A) =

∑

B⊆A
|B|≤γ

m(B) +
∑

B⊆A
|B|≤γ

∑

C⊆A
|C|>γ

HC
γ (B)

+
∑

B⊆A
|B|≤γ

∑

C 6⊂A
|C|>γ

HC
γ (B).

Now we can notice that:
∑

B⊆A
|B|≤γ

∑

C⊆A
|C|>γ

HC
γ (B) =

∑

B⊆A
|B|>γ

m(B),

as the mass associated to subsets ofA with cardinality> γ is
redistributed to the subsets ofA with cardinality≤ γ. Thus,

b[GP ]
γ (A) =

∑

B⊆A
|B|≤γ

m(B) +
∑

B⊆A
|B|>γ

m(B)

︸ ︷︷ ︸

b(A)

+
∑

B⊆A
|B|≤γ

∑

C 6⊂A
|C|>γ

HC
γ (B)

︸ ︷︷ ︸

≥0

i.e. b
[GP ]
γ (A) ≥ b(A), andb � b

[GP ]
γ . �

Let us now summarize in a single theorem all the results
on the set of pignistick-additive belief functions as well as
the consequences of these results:

Theorem 1:Let b be a k-additive belief function. The
set PBF [b] of pignistic k-additive belief functions has the
following properties:

1) whenγ = k the transform is idle asb = b
[GP ]
k , while

whenγ = 1, we obtain the Shapley value:b
[GP ]
1 = b[S];

2) ∀γ ≤ k, b
[GP ]
γ is a γ-additive belief function;

3) ∀γ ≤ k, b
[GP ]
γ dominatesb;

4) PBF [b] is unique, and givenγ ≤ k, ∃! pignistic γ-
additive belief function which dominatesb;

5) ∀γ ≤ k, PBF [b
[GP ]
γ ] ⊆ PBF [b];

6) ∀γ2 < γ1 ≤ k, b
[GP ]
γ1 � b

[GP ]
γ2 . In particular, we have

b = b
[GP ]
k � b

[GP ]
k−1 � · · · � b

[GP ]
2 � b

[GP ]
1 = b[S];

Proof: 1) and 2) see [5]. 3) Proposition 3. 4) By definition
+ Corollary 1. 5) Consequence o f 4. 6) Consequence of
Proposition 3. �



IV. T HE POLYTOPE OFk-ADDITIVE DOMINATING BELIEF

FUNCTIONS

Now, let us turn to the polytopeBk[b], the polytope ofk-
additive belief functions dominatingb. Proposition 1 states
that the polytope of dominating probabilities (1-additivebelief
functions)P[b] = B1[b] has vertices associated with permu-
tations of the list of element ofΩ. This suggests that the set
of dominatingk-additive belief functions could have a similar
form, with each vertex associated with a permutation of the
list of subsets of sizesmaller than or equal tok.

Conjecture 1:Given a belief functionb : P(Ω) → [0, 1],
with mass functionm, the regionBk[b] of all the k-additive
belief functions1 on Ω which dominateb according to order
relation (4) is the polytope:

Bk[b] = Cl(bρ[b] ∀ρ),

where ρ is any permutation{Aρ(1), ..., Aρ(|Pk(Ω)|)} of the
subsets ofΩ of size at mostk, and the vertexbρ[b] is the
k-additive belief function with the following mass function:

mρ[b](Aρ(i)) =
∑

B⊇Aρ(i); B 6⊃Aρ(j) ∀j<i

m(B). (7)

We illustrate the sensibility of this conjecture on a simple
example.

A. A toy example: the binary case

In the case of a binary frameΩ = {x, y} the list of
subsets of size at mostk = 2 obviously reads asP2(Ω) =
{{x}, {y}, {x, y}}, so that the possible permutations of such
a list are six:

ρ1 = ({x}, {y},Ω) ρ2 = ({x},Ω, {y})
ρ3 = ({y}, {x},Ω) ρ4 = ({x},Ω, {y})
ρ5 = (Ω, {x}, {y}) ρ6 = (Ω, {y}, {x})

According to our conjecture on the nature of the vertices of the
polytope ofk-additive dominating belief functions (Equation
(7)), both of the permutations in each row above generate the
same 2-additive belief function.

Namely, having denoted by~m = [m(x),m(y),m(Ω)]′ the
vector encoding the basic probability assignment of a belief
function, the above pairs of permutations generate (by means
of Equation (7)) the following vertices:

ρ1, ρ2 → [m(x) + m(Ω),m(y), 0]′

ρ3, ρ4 → [m(x),m(y) + m(Ω), 0]′

ρ5, ρ6 → [m(x),m(y),m(Ω)]′
(8)

B. Geometry ofB2[b] in the binary case

Given a frame of discernmentΩ, a belief functionb :
2Ω → [0, 1] is completely specified by itsN − 2 belief values
{b(A), ∅ ( A ( Ω}, N = 2|Ω|, and can be represented as a
vector withN − 2 entries, i.e., a point ofRN−2 [15]. The set
B of points of RN−2 which correspond to a belief function

1Formally, Bk[b] is the polytope of all thè -additive belief functions,
with ` ≤ k, but the presence/absence of such subpolytopes, which are only
hyperfaces ofBk[b], is immaterial for a barycentre computation.

is calledbelief space. If we denote bybA the categorical[2]
belief function assigning all the mass to a single subsetA ⊆ Ω
(mbA

(A) = 1, mbA
(B) = 0 for all B 6= A), the belief space

B is a simplex, and each belief functionb ∈ B can be written
as a convex sum of the vectorsbA representing the categorical
belief functions as:

b =
∑

∅(A⊆Ω

mb(A) · bA. (9)

Figure 1 depicts the belief space and polytopeB2[b] of the
2-additive belief functions dominating a given belief function
b for a frameΩ of cardinality 2. Here each belief function is a
vectorb = [m(x),m(y)]′ andB = Cl(bx, by, bΩ). As it can be
appreciated, the last vertex in (8) ofB2[b] corresponds to the
original belief functionb, while the first two are nothing but
the vertices of the setP[b] = B1[b] of dominating probabilities.

Figure 1. The polytopeB2[b] of the 2-additive belief functions dominating
a given belief functionb defined on a frame of size 2. The vertices of such
polytope meet the conjectured form (7), and are given by the basic probability
assignments of Equation (8).

We can notice two facts: On one side, the conjecture
seems to be confirmed by the analysis of the binary case
k = 2. On the other side, unlike the case of dominating
probabilities, there is no 1-1 correspondence between vertices
of the polytope and the permutations of subsets, as each
vertex is produced by two different permutations. However,all
vertices are associated with the same number of permutations.
It is sensible to conjecture that this holds in the general case
too.

Conjecture 2:All the vertices ofBk[b] are associated with
the same number of permutations ofPk(Ω).
This allows to deal with the computation of the center of mass
of Bk[b] in a straightforward manner.

V. THE BARYCENTER OF THE SET OFk-ADDITIVE

DOMINATING BELIEF FUNCTIONS

We first go through the (already known) computation of the
barycenter of the polytopeP[b] of dominating probabilities



(1-additive belief functions), in a way that can be generalized
to k-additive belief functions. Then, we will move to that of
Bk[b], following a similar proof.

A. The barycenter of dominating probabilities

If we use the shorthand notation#ρ for the cardinality of
the set of the permutationsρ of Ω, the center of massP[b] of
P[b] is given by

∑

ρ

pρ[b]

#ρ

which, by Equation (6), corresponds to a Bayesian mass
function which assigns to any focal element{x} the value

∑

B⊇{x}

m(B)
#ρ : ∀x′ <ρ x : B 6⊃ {x′}

#ρ
.

where x′ <ρ x indicates thatx′ comes beforex in the list
of elements associated with the permutationρ. To simplify
this expression, we need to compute for each singleton focal
elementB ⊇ {x} the number of permutationsρ of Ω such
that B does not include any singletonx′ which comes before
x (x′ <ρ x) in the associated list{xρ(1), ..., xρ(|Ω|)}.

For all possible positions ofx in the list, the permutation
must be such that all elements beforex are extracted fromBc,
the complement ofB. In any admissible permutation,x has to
appear in one of the first|Ω|− |B|+1 locations (as otherwise
some other elements ofB would come beforex in the list). For
each positioni of x, the number of admissible permutations is
given by the possible dispositions (|Ω|−|B|)!

[(|Ω|−|B|)−(i−1)]! of (|Ω| −
|B|) points (the elements ofBc) in i−1 locations (the elements
of the list beforex), multiplied by the number(|Ω| − i)! of
permutations of the remainingn − i singletons, which can
appear afterx in any order.

Then,P[b] is given by a mass function which assigns to
{x} the value:

∑

B⊇{x}

m(B)

|Ω|−|B|+1
∑

i=1

(|Ω| − |B|)!

[(|Ω| − |B|) − (i − 1)]!

(|Ω| − i)!

|Ω|!
.

We can further simplify the multiplicative coefficient ofm(B)
in the above expression, as follows:

|Ω|−|B|+1
∑

i=1

(|Ω| − |B|)!

[(|Ω| − |B|) − (i − 1)]!

(|Ω| − i)!

|Ω|!

=

|Ω|−|B|+1
∑

i=1

(|Ω| − |B|)!

[(|Ω| − i) − (|B| − 1)]!

(|Ω| − i)!

|Ω|!

=

|Ω|−|B|+1
∑

i=1

(|Ω| − |B|)!

[(|Ω| − i) − (|B| − 1)]!

(|B| − 1)!

(|B| − 1)!

(|Ω| − i)!

|Ω|!

=
(|Ω| − |B|)!(|B| − 1)!

|Ω|!

×

|Ω|−|B|+1
∑

i=1

(|Ω| − i)!

[(|Ω| − i) − (|B| − 1)]!(|B| − 1)!

=
(|Ω| − |B|)!(|B| − 1)!

|Ω|!

|Ω|−|B|+1
∑

i=1

(
|Ω| − i

|B| − 1

)

,

which, after recalling that

|Ω|−|B|+1
∑

i=1

(
|Ω| − i

|B| − 1

)

=

(
|Ω|

|B|

)

becomes

=
(|Ω| − |B|)!(|B| − 1)!

|Ω|!

(
|Ω|

|B|

)

=
1

|B|
.

As a consequence,P[b] corresponds to the pignistic probability
m[BetP ] [2], as:

∑

B⊇{x}

m(B)

|B|
= m[BetP ](x). (10)

B. The case of dominatingk-additive belief functions

The proof of the analytical form of the center of mass
Bk[b] of Bk[b] follows the one given for the barycenter
P[b] = BetP [b] of P[b]. Let us denote by

M(|Ω|, k)
.
=

k∑

i=1

(
|Ω|

i

)

the number of non-empty subsets of size at mostk in |Ω|.
Note that

M(a, b) 6= N (a, b) =

b∑

i=1

(
a

i

)

· i,

as in the definition ofN the contribution of each focal element
is weighted by its cardinality. Under the assumption that
Conjectures 1 and 2 are true, the barycenter ofBk[b] is

∑

ρ

bρ[b]

#ρ
.

By Equation (6) this corresponds to a mass function which
assigns to each focal elementA: |A| ≤ k the value:

∑

B⊇A

m(B)
#ρ : ∀A′ <ρ A : B 6⊃ A′

#ρ
. (11)

Again the coefficient ofm(B) in the above equation is
proportional to the number of permutationsρ of Pk(Ω) such
that B does not contain any element ofPk(Ω) that comes
beforeA in the permutation.

In the present case, there areM(|Ω|, k) elements inPk(Ω).
Of these,M(|Ω|, k) −M(|B|, k) are not included inB. Let
l = |B|. As before, for each positioni of A, the number of
admissible permutations is given by the possible dispositions

(M(n, k) −M(l, k))!

[(M(n, k) −M(l, k)) − (i − 1)]!

of the M(n, k) − M(l, k) subsets of size≤ k which are
not included inB over i − 1 locations (the elements of the
list before A), multiplied by the number(M(n, k) − i)! of
permutations of the remainingM(n, k)−i elements ofPk(Ω),
which can appear afterA in any order.

The same derivations of Section V-A hold then for the case
of dominatingk-additive belief functions too, when we replace



|Ω| with M(|Ω|, k) and |B| with M(|B|, k). Therefore, the
multiplicative coefficient ofm(B) in Equation (11) turn out
to be 1

M(l,k) . This leads to the following theorem:
Theorem 2:If Conjectures 1 and 2 hold, given a belief

function b : 2Ω → [0, 1] of mass functionm, the center of
massBk[b] of the polytopeBk[b] of `-additive belief functions
dominatingb (∀` ≤ k) is given by the mass functionm[CM ]

k

which reads

m
[CM ]
k (A) =

∑

B⊇A

m(B)
1

M(|B|, k)
, ∀A ∈ Pk(Ω)(12)

m
[CM ]
k (A) = 0 otherwise (13)

whereM(|B|, k) = |Pk(Ω)|.
Proof: see above �

At this point, let us stress to two important facts ofm
[CM ]
k :

First, as expected, fork = 1, the expression (12) reduces to
the one of the pignistic function (10), sinceM(|B|, 1) = |B|.
Moreover, the interpretation of the barycenter (12) of the set of
k-additive dominating belief functions is straightforward. As
the pignistic function is the result of a redistribution process
in which the mass of each focal element is re-assignedon
an equal basisamong its elements (size 1 subsets), Equation
(12) represents an analogous redistribution process in which
the mass of each focal elements is re-assignedto each subset
of size≤ k on an equal basis.

VI. D ISCUSSION

Several questions arise on the barycentersBk[b], ∀k ≤ |Ω|,
on the setPBF [b], and on the interplays of these two sets of
belief functions, or equivalently, on the respective location of
these two sets of vectors in the belief space [15].

First, it is interesting to consider the location of all the
centers of massBk[b], ∀k ≤ |Ω|, with respect to one another,
knowing that their coordinates in the belief space [15] is
given by the mass functionsm[CM ]

k , ∀k ≤ |Ω|. Of course,
the question is “Are they all located on the line joiningb
and b[S] ?”. We tend to think they are. In addition, beyond
their geometrical interpretation, the question of the semantic of
the barycentersm[CM ]

k ,∀k of thek-additive dominating belief
functions arises. Is it worthy to use it for decision making,as
another possible generalization of the pignistic probability ?
If yes, to what kind of behaviour does it correspond to ?

Concerning thek-additive pignistic transformsb[GP ]
k , ∀k ≤

|Ω|, we can ask ourselves:

• what is the distance between the elements ofPBF [b] and
b[S]? We know thatb[GP ]

1 = b[S], and we can conjecture
that b[GP ]

k1
− b[S] ≥ b

[GP ]
k2

− b[S] iff k1 > k2;

• what is the nature of the differenceb[GP ]
k − b[S] as a

function of k and |Ω|?

The most interesting question, possibly, regards the char-
acterization of the difference vector joining in the belief
space, thek-th element ofPBF [b] and the corresponding
barycenterBk[b] of Bk[b]. In the belief space, the coordinates
of a vector representing a belief function are given by its

basic probability assignmentm. Such difference vector will
therefore be expressed as:

∑

A∈Pk(Ω)

(m
[GP ]
k (A) − m

[CM ]
k (A)) · bA.

The study of this difference is likely to shed some light on the
nature of the two different redistribution processes generating
m

[GP ]
k andm

[CM ]
k , and will be pursued in the near future.

VII. C ONCLUSIONS

In this paper, we investigated some dominance properties
of the set of pignistick-additive belief functions. In parallel,
we proposed two natural conjectures on the set of dominating
k-additive belief functions, inspired by the case of dominating
probabilities. Surprisingly, the associated barycenter’s analyt-
ical form is very simple and elegant in terms of degrees
of belief and mass redistribution. This led to the definition
of another, “geometrical” set of pignistick-additive belief
functions. A number of questions on the interplay of these two
sets of functions in the polytope ofk-additive belief functions
naturally arise and need to be answered in the near future. The
next natural step along this line of research will be the formal
proof of two conjectures, following the intuition providedby
the case of dominating probabilities.
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