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Abstract—Dislocation is defined as the change between discrete
sequential locations of critical materials such as special valves or
fabricated items, on a large construction project. Dislocations
of construction materials on large sites represent critical state
changes. Detecting these dislocations in a noisy information
environment where low cost Radio Frequency Identification tags
are attached to each piece of material, and the material is
moved sometimes only a few meters, is the main focus of
this study. We propose in this paper a method based on the
Transferable Belief Model (TBM) to estimate materials locations
and detect dislocations. This method has been implemented
and real experiments were carried out. The results of these
experiments show the ability of the proposed method to track
the materials.
Keywords: Dislocation Detection, Dislocation Tracking,
Belief Functions, Sensors Network, Construction Materi-
als, RFID, GPS

I. INTRODUCTION

Material tracking is a key element in a construction mate-
rials management system. The unavailability of construction
materials at the right place and at the right time has been
recognized as having a major negative impact on construction
productivity. Moreover, poor site materials management poten-
tially delays construction activities, and thus threatens project
completion dates and stands to raise total installed costs [1].
While automated controls are often established for engineered
and other critical materials during the design and procurement
stages of large industrial projects, on-site control practices are
still based on necessarily fallible direct human observation,
manual data entry, and adherence to processes. These are in-
adequate for overcoming the dynamic and unpredictable nature
of construction sites. Node location approaches using signal
strength and based on triangulation or relaxation algorithms
[2]–[4] are limited because of the cost of required node elec-
tronics (no current high volume demand exists), and because
the anisotropic, dynamic transmission space on a construction
site, for example, can not feasibly be mapped at the temporal
or spatial resolution required. In addition, even sophisticated
and expensive solutions experience multipath, dead space,
and environmentally-related interference to some extent. For
example, the Wi-Fi RTLS (real time location systems), such

as commercial solutions from AeroScout, Ubisense, Ekahau,
and the PanGo Network, require extensive calibration to map
the Wi-Fi signals to locations throughout a building while
the existence of 802.11 access points is not guaranteed for
any facility being built. Thus we have selected a more cost-
effective approach that is applicable to construction job site
specifications. However, developing a method for location
estimation that is robust to measurement noise but still has a
reasonable implementation cost is a challenge. Wireless sensor
network-based data collection technologies such as GPS and
RFID (Radio Frequency Identification) are being developed for
a wide spectrum of applications. Specifically, more recent re-
search is demonstrating that, coupled with mobile computers,
data collection technologies and sensors can provide a cost-
effective, scalable, and easy-to-implement materials location
sensing system in real world construction sites [1], [5]–[15].
The evident drawback of the current cost-effective and scalable
systems is lack of accuracy, precision, and robustness. The
study presented here is an improved formulation for robustly
processing uncertainty and imprecision in proximity methods.
Hence it is naturally developped within the belief function
framework and more precisely within the Transferable Belief
Model (TBM) proposed by Smets [16]. By proximity we mean
a binary spatial-constraint-based method [9]. The approach
presented here gracefully manages the issue of dislocated tags,
and results are presented graphically in an intuitive format.

For the purpose of this research, an integrated solution
for automated identification and localization of construction
materials was incorporated for a large industrial construction
project. The main focus of the field trial was to develop a
data fusion method for location estimation that is robust to
measurement noise and has a reasonable implementation cost.
The field trial involved a continuous site presence over 16
months by three graduate and three undergraduate students.
For the subset of data used in this paper, the tags location
data were logged by GPS-enabled readers for 109 tags, three
times per day, for four consequent days. RFID read rates were
sporadic, ranging from ten reads of a tag per minute to periods
of hours without reads.

This paper is organized into the following sections. A brief



introduction provides background to occupancy cell frame-
work and proximity localization methods. Then, a practical
elaboration on formulating belief function theory for locating
materials and detecting dislocated items is presented. A brief
description of the construction field experiment and the ac-
quired data set follows. The results indicating the potential of
the belief function theory to detect materials dislocation make
up the next section. Finally, the conclusion summarizes the
findings of this research study, and suggests additional further
works.

II. PROXIMITY MEASURE AS LOCALIZATION PROCESS

Proximity as described below first appeared in the reference
[17].

A. Localization : Background

In general, there are two approaches to localization. One
is fine grained localization using detailed information, and the
other is coarse-grained localization using minimal information.
The tradeoff between the two approaches is obvious: minimal
techniques are easier to implement and more likely to consume
fewer resources and incur lower equipment costs, but they
provide less accuracy than detailed information techniques.
Fine-grained node localization methods are based on spe-
cific detailed information and can be categorized into these
measurement techniques: Time of Flight Received Signal
Strength (RSS) Lateration and Angulation Distance-estimation
using time difference (TDoA) Pattern Matching (RADAR)
RF sequence decoding. Coarse-grained node localization or
connectivity-based localization algorithms are those which do
not use any of the measurement techniques described above.
In this category, some sensors called anchors have a priori
information about their location. The locations of other sensors
are estimated based on connectivity information, such as who
is within communication range of whom.

B. Introducing Proximity

Proximity is the basis of another localization model that
does not attempt to actually measure an object distance from
reference points, but rather determines whether an object is
near one or more known locations. The presence of an object
within a certain range is usually determined by monitoring
of physical phenomena with a limited range, e.g., physical
contact to a magnetic scanner, or communication connectivity
to access points in a wireless cellular network. We suppose
here that each material of interest is equipped with a RFID as
illustrated in the picture 1 taken from a real construction site.

Some of the proximity-based methods introduced in this
section make up a part of the proposed solution for this
research. In proximity models, for reduction of computational
complexity, a discrete representation in 2D is employed instead
of a more realistic continuous model. In the discrete view, a
rover (any reader carrier) moves around in a square region,
Q, with sides of length s; Q is partitioned into n2 congruent
squares called cells of area ( s

n )2. The RF communication
region of a read is modeled as a square centered at the read

Figure 1. Example of a construction site where materials are equipped with
RFID

and containing (2ρ + 1)2 cells, instead of a disk of radius r.
Thus, the position of reads as well as tags is represented by a
cell with grid coordinates, rather than a point with Cartesian
coordinates, and one is only interested in finding the cell(s)
that contains each RFID tag (2). This paradigm is applied in
the proximity approaches in particular.

Figure 2. Modelling the Radio Frequency Communication Region under the
Occupency Cell Framework [18]

Simic and Sastry presented in [19] a distributed algorithm
for locating nodes in a discrete model of a random ad hoc
communication network and introduced a bounding model for
algorithm complexity. Song et al [18] adapted this discrete
framework, based on the concept that a field supervisor or
piece of materials handling equipment is equipped with an
RFID reader and a GPS receiver, and serves as a rover (a
platform for effortless reading). The position of the reader
at any time is known since the rover is equipped with a
GPS receiver, and many reads can be generated by temporal
sampling of a single rover moving around the site. If the reader
reads an RFID tag fixed at an unknown location, then RF
communications connectivity exists between the reader and
the tag, contributing exactly one proximity constraint to the
problem of estimating the tag location. As the rover comes into
communication range with the tag time and time again, more
reads form such proximity constraints for the tag. Combining
these proximity constraints restricts the feasible region for the
unknown position of the tag to the region in which the squares
centered at the reads intersect with one another (see figure 3).

Song et al also implemented Simic and Sastrys algorithm in
large-scale field experiments ( [9]), including as parameters (1)
RF power transmitted from an RFID reader, (2) the number of
tags placed, (3) patterns of tag placement, and (4) the number
of reads generated based on random reader paths. Analyzing



Figure 3. Modelling the Radio Frequency Communication Region under the
Occupency Cell Framework

data collected shows that in 51% of the total 4,200 instances,
the true location of a tag was expected to be within +/-3 cells
from the center of the region estimated to contain that tag.
Although this approach was proven adequate (3-4 m accuracy)
for static distributions of tags, it is not easily extended to
tracking moving or moved tags.

The problem tackled here is the localization of an unknown
huge number of communication nodes (the RFID tags) using
a moving sensors network. Each node might itself moves
and the sensors network is constituted by coupling GPS
receivers and RFID readers embended on moving rovers which
explore continuously the surface onto which the nodes are
disseminated. The raw detections made by the rover may be
corrupted by two kind of errors :
• When the reader receives a signal from a node, it may

only determine a geographic zone within which the tag is
located. Hence, a raw detection only provides a inaccurate
localization.

• The communication range between a reader and a tag is
anisotropic and time-varying : no detection doesn’t mean
no tag is present in the neighbourhood of the reader. The
localization based on raw detections is uncertain.

We therefore need a general framework which modelizes
both the inaccuracy and the uncertainty in order to improve
both the true detection probability and the localization preci-
sion. That is the reason why the Transferable Belief Model
(TBM) has been chosen to propose a solution. The TBM
framework will not be recalled here but those interested
in more readings in that field can refer to the following
references [16], [20]).

III. PROBLEM MODELING IN THE TBM FRAME

A. The frame of discernment

As a tag can be a priori in any cell of the grid, the following
frame of discernment is defined for each tag:

E = {hij |i = 1, . . . , n j = 1, . . . , n} (1)

with hij the hypothesis: the tag is located in the ith row and
the jth column cell of the grid. If the localization was perfect

and the communication area was fixe, one would be able, when
the reader detects the tag, to determine in a deterministic way a
geographic area where the tag is. The imperfections described
in the section II-B do not allow the modeling of the knowledge
about the presence of a tag in a sure way. It is necessary to
split our belief about the presence of a tag on several subsets
of cells centered on the localization device.

B. Defining the bbas

As the communication distances are anisotropic and non
stationary, it is really difficult to define the subsets related
to their preceding description by using only propagation
considerations. To cope with these difficulties we have defined
these subsets by using some simple geometric shapes like
those proposed in the reference [19]. We thus consider for
each discrete time a finite suite of square areas Bk centered
on the reader, defined by:

B1 ⊂ B2 ⊂ . . . ⊂ BM (2)

If the localization device detects a tag at the location (x, y),
the set Bk at the same discrete time can be defined for example
by:

Bk = {hij |i ∈ {x− k, . . . , x+ k} j ∈ {y − k, . . . , y + k}}
(3)

The detection of the tag by the localization device means
that the tag is in the neighborhood of this one. So, an
elementary belief mass is affected to each subsets Bk (k ∈
{1, . . . ,M}):

M∑
k=1

m(Bk) = 1 (4)

Figure 4 illustrates this principle for M = 2. This kind of
belief modeling can be viewed as a very simple solution to
take into account the decreasing of the communication signal
power.

Figure 4. bba modeling for two subsets B1 ⊂ B2 of the frame of
discernement .

Example 1: Let us assume that the value M = 2 is chosen
and that the localization device detects a tag at the position
(x, y), this position is estimated by using a GPS. The subset



B1 is defined as B1 = {hij |i ∈ {x−1, . . . , x+1} j ∈ {y−
1, . . . , y+ 1}} and the subset B2 is defined as B2 = {hij |i ∈
{x − 2, . . . , x + 2} j ∈ {y − 2, . . . , y + 2}}. For example,
one possible choice is m(B1) = 0.6 and m(B2) = 0.4.

The bbas assignation procedure is executed for each discrete
time t and for each tag e. For each discrete time and for each
tag the bba me,t is formed, the focal elements of these are the
subsets Bk.

C. Fusion of the bbas
As we’ve just seen, we get at any moment a bba for each tag

e. The belief mass at time t is therefore obtained by combining
all the previous bbas from time 1 to time t:

me,1:t(A) = (me,1 ∩© me,2 . . . ∩© me,t−1 ∩© me,t)(A)
= (me,1:t−1 ∩© me,t)(A)

=
∑

A1∩A2=A

me,1:t−1(A1)me,t(A2) (5)

D. Tag Localization : Pignistic Probability Calculation
Once we get the belief function me,1:t we must decide

in which cell the tag is located. We therefore switch to the
pignistic level and carry out the pignistic transformation which
let us obtain the pignistic probabilities of each hypothesis hij .

E. Dislocation detection : conflict analysis
The conflict is equal to the empty set belief mass after

combination. For the present case, it may have several origins
:
• the reader does not work
• the communication zone of the tag is smaller or bigger

than the one considered for the initial modelling. The
focal elements represent badly the reality and the bba are
not well adapted to the problem.

• the tag has moved; the new proximity measure is in
conflict with the bba resulting from the previous com-
binations.

It is supposed here that the readers work well and that the
modelling of the communication ranges is realistic. Disloca-
tion is therefore the only origin for a conflict rising and a tag
moving may lead to a significant value of the conflict. From
an applicative point of view we have to decide which strategy
must be carry out when the conflict becomes too high. From
a general point of view three strategies are possible:
• After each detection a discounting operation is realized

on the last combined bba. This leads to favour the last
detection and decrease the weight of the past detections
: the older the less significant.

• The size of the focal elements are increased to lower the
conflict value.

• If at time t the conflict becomes higher than a given
threshold, the detection process is reseted using the bba
resulting from the last detection as initialization : me,1:t

is abandonned.
For the sake of simplicity during the implementation stage,

the last strategy was chosen.

IV. ALGORITHMIC IMPLEMENTATION AND ISSUES

In the applications area considered in this paper, n varies
from 100 to 1000, so the cells number varies from 104 to 106.
It is possible to estimate that always about ten detection means
are moving around on the construction site and each of them
makes a reading every second. The application of the belief
function theory as described in the preceding sections needs
to work on a space which dimension varying from 2104

to
2106

. The use of classical matrix algebra is thus impossible in
such space. In order to face this problem the method presented
in [21] has been used. Each belief mass is caracterized by
a set {Bk,m(Bk)}. Each subset constituted by cells Bk is
represented by a binary vector {bi|i = 1..n2} of n2 elements,
each bit bi being associated with a cell ci. The subset of
cells Bk is thus depicted by the vector {bi} such that for
i = 1 . . . n2:

bi =
{

1 if ci ∈ Bk

0 else (6)

By using this representation the intersection of two subsets
is obtained by the utilization of the logical operator AND. The
parameters of this operator are the binary vectors which repre-
sent the subsets. Therefore, the fusion operation corresponds
to an element by element product of the matrices (which
represent the focal subsets) and the vectors (which represent
the masses assigned to each subset of each structure).

V. ON-SITE IMPLEMENTATION AND EXPERIMENTS

Simulations results have been presented in the paper [22]
and a first implementation on real data was presented in the
paper [17]. In this last implementation data were collected on
a real construction site but the dislocations were simulated.
In this paper we are presenting results from a second imple-
mentation with less materials but where the dislocations are
real. The way of implementing the fusion process is the same
as the one described in [17]. The experiment was conducted
in a parking lot on the University of Waterloo campus with
38 RFID tags. The tags were deployed into separate blocks
to provide spatial information for the site plan. These blocks
are represented as white squares in the figure 5. This spatial
information can be used to easily identify blocks that contained
tags and ones that did not. Tag locations were logged through
a specified number of runs of the program for a variety of
rover paths.

Using these data ROC curves have been drawn for different
values of the nested bba. As in example 1 we choose M = 2.
We’ve drawn three different ROC curves for three different
values of the inside focal element side length li (also called
the read range). The ratio between the two focal elements is
also different :

1) li = 4m, ratio 1 to 2
2) li = 6m, ratio 1 to 3
3) li = 8m, ratio 1 to 4
The corresponding curves are drawn in figure 6.



Figure 5. Tags Location on the Parking Lot of the University of Waterloo.
Tags Are Deployed into the White Squares called here blocks. Yellow Points
Represent Tag Location as Measured by a GPS.

Figure 6. ROC curves for different values of the bba and different ratio
between the focal elements

As it can be seen in this figure the choice of the side length
of the focal elements is important as it changes significantly
the ROC curve mainly in the interval [0.2, 0.3] of the false
positive rate (i.e. false alarm rate). For instance, for a 0.3 false
alarm rate, the true positive rate (i.e. true detection rate) is
equal to one for li = 4m and a ratio 1 to 2 whereas it is
only equal to 0.7 and 0.85 in the two other cases. We have
also plotted ROC curves for the same value of li but for the
same ratio for all li: 2 to 1. The corresponding curves are
drawn in the figure 7. The analysis of these curves shows
the importance of the ratio between the two nested squares
since this time li = 6m leads to the best results in the range
[0.25, 0.3] of the false alarm rate. We still need to work on
these results to well understand the underlying phenomenon.
It is also clear that when li is too large, the results become
bad. This is due to the fact that the effective (on site) read

range is usually lower than 5m.

Figure 7. ROC curves for different values of the bba and the same ratio
between the focal elements (2 to 1)

The performances of the proposed method are also com-
pared with the performance of a simple threshold on the dis-
tance: the thresholding was applied to the distance between the
new observation and the average of the previous observations.
If the new observation in beyond the threshold distance, it
was considered as a dislocation event and the old location
information was discarded. The corresponding ROC curve is
plotted in figure 8. The main differences are observed within
the interval [0.2, 0.4] of the false positive rate. For a 0.3 false
alarm rate, the true positive rate is equal to one for li = 4m and
a ratio 1 to 2 whereas it is only equal to 0.85 in the ”distance
only” based method. The ROC curve of the Dempster Shafer
based method exhibits better performances within the interval
[0.2, 0.4] when, of course, the bbas modelize efficiently the
reality. This point is important because the improvement is
localized in the low false alarm rate section, where we usually
want to maximize the true detection rate.

Figure 8. ROC curves for different values of the bba and different ratio
between the focal elements

However, as it can be seen on both figures 6 and 8 the true
detection rate is still bad within the interval [0, 0.2]. More
work must be still be done to improve the method in this



section since an good operationnal functionning point would
be a detection rate near one for a false alarm rate around 0.1.

VI. CONCLUSION

The targeted application described in this paper is to detect
dislocation of materials on a construction site. Each material
to detect is equipped with a RFID tag. A rover equipped
with a RFID receiver and a GPS receiver is moving on the
construction. The RFID receiver allows detections and the
GPS localizations. Imprecision and uncertainty are the two
main characteristics of this process. The Transferable Belief
Model (TBM) is therefore well adapted to propose a solution
to improve the detection especially in case of dislocation. We
propose in this paper a dislocation detection strategy based on
the TBM and on the use of the conflict resulting from succes-
sive combinations. In order to do so the space is discretized
in a finite but huge number of elementary squared surfaces
each of them might contain a tag. All these elementary cells
constitute the frame of discernement. After a raw detection
by a receiver basic belief masses are assigned to few nested
subsets of the space. Each detection is followed by a fusion
step with the previous bbas. The conflict is then analyzed and
if it is greater than a given threshold, a dislocation is detected.
This is not the only way, nor of course the optimal way, to
deal with the increasing of the conflict but is is quite simple
to manage on a huge construction site. We will come again
on this point at the end of this conclusion.

This method has been implemented and evaluated during
experimentations. In [17] the data were collected on a real
construction site but the dislocations were simulated. In this
paper we present experimentations results for less RFID tags
but with real dislocations. It is shown here that the belief func-
tion based method proposed exhibits better performances than
a classical method based on a simple distance thresholding
method often used in such applications. This result is only
true when the belief functions modelize correctly the RFID
read region and the ROC curves are very sensitive to this: the
improvement no longer exist with small deviation of the good
parameters. More work must still be done to propose a robuts
method of detection and tracking of the dislocations.

Moreover, as it can be seen on both figures 6 and 8 the true
detection rate is still bad within the interval [0, 0.2]. More
work must be still be done to improve the method in this
section since an good operationnal functionning point would
be a detection rate near one for a false alarm rate around 0.1.

It exists today several way of investigations to improve the
method. The first one is the way of managing the conflict.
It is here very simple but surely not optimal. Moreover, the
detection of dislocation is only based on the analysis of the
conflict, is it really the better parameter (or at least the only
one) for this purpose ?

VII. ACKNOWLEDGEMENT

The author would like to thank warmly, François Caron, to-
day researcher at the INRIA of Bordeaux Sud-Ouest (France)
for its early but important contribution to the project. The

method implemented here are for a large part based on his
past work.

REFERENCES

[1] D. Grau and C. Caldas, “Field experiments of an automated materials
identification and localization model,” in Proceedings of the 2007 ASCE
International Workshop on Computing in Civil Engineering, 2007, pp.
689–696.

[2] S. BOYD L. VANDENBERGHE, Convex Optimization. Cambridge
University Press, 2004.

[3] N. BULUSU J. HEIDEMANN D. ESTRIN, “GPS-less low-cost outdoor
localization for very small devices,” IEEE Transaction on Personnal
Communications, vol. 7, no. 5, pp. 28–34, 2000.

[4] L. DOHERTY L. GHAOUI, “Convex position estimation in wireless
sensor network,” in Proceedings of IEEE INFOCOM, 2001, pp. 1655–
1663.

[5] B. Akinci, M. Patton, and E. Ergen, “Utilizing radio frequency iden-
tification on precast concrete components - supplier’s perspective,” in
Proceedings of the 19th International Symposium on Automation and
Robotics in Construction, Sep. 2002, pp. 381–386.

[6] C. Caldas, D. Grau, and C. Haas, “Using global positionning systems to
improve materials locating processes on industrial projects,” Journal of
Construction Engineering and Management, vol. 132, no. 7, pp. 741–
749, 2006.

[7] S. Razavi, D. Young, H. Nasir, C. Haas, and C. Caldas, “Field trial
of automated material tracking in construction,” in Proceedings of the
CSCE 2008 Conference, Canada, Jun. 2008.

[8] J. Song, C. Haas, and C. Caldas, “Tracking the location of materials
on construction job sites,” Journal of Construction Engineering and
Management, vol. 132, no. 9, pp. 911–918, 2006.

[9] ——, “A proximity-based method for locating rfid tagged objects,”
Special Issue of Journal of Advanced Engineering Informatics on RFID
Applications in Engineering, 2006.

[10] I. TOMMELEIN, “Pull-driven scheduling for pipe-spool installation :
Simulation of a lean construction technique,” J. Constr. Engrg. manag.,
vol. 124, no. 4, pp. 279–288, 1998.

[11] F. PEYRET R. TASKY, “Asphalt quality parameters traceability using
electronics tags and GPS,” in Proceedings of ISARC’02 - Washington
DC, 2002, pp. 155–160.

[12] D. KINI, “Materials management : the key to successful project man-
agement,” J. of Mgmt in Engrg., vol. 15, no. 1, pp. 30–34, 1999.

[13] E. JASELSKIS EL-MISALAMI, “Implementating radio frequency iden-
tification in the construction process,” J. of Mgmt in Engrg., vol. 129,
no. 6, pp. 680–688, 2003.

[14] M. VORSTER G. LUCKO, “Construction technology needs assessment
update,” Construction Industry Institute, Austin, Texas, Tech. Rep.
Report 173-11, 2002.

[15] R. SACKS R. NAVON E. GOLDSCHMIDT, “Building project model
support for automated labor monitoring,” J. of Computing in Civil Engrg,
vol. 17, no. 1, pp. 19–27, 2003.

[16] P. SMETS R. KENNES, “The transferable belief model,” Atificial Intel-
ligence, no. 66, pp. 191–234, 1994.

[17] S. Razavi, C. Haas, P. Vanheeghe, and E. Duflos, “Dempster-schafer
method to detect dislocation of materials in constructions,” in Proceeding
of the 12th Conference on Information Fusion FUSION 2009, Jul. 2009.

[18] J. Song, C. Haas, C. Caldas, and K. Liapi, “Locating materials on
construction sites using proximity techniques,” in Proceedings of the
ASCE Construction Research Congress, USA, 2005.

[19] S. SIMIC S. SASTRY, “Distributed localization in wireless ad-
hoc networks,” Department of Electrical Engineering and Computer
Science, University of California, Berkeley - CA, Tech. Rep. UCB/ERL
M02/26, 2002. [Online]. Available: http://robotics.eecs.berkeley.edu/
∼sismic/PDF/localization.pdf

[20] P. SMETS, “Data fusion in the transferable belief model,” in Proceedings
of the 3rd International Conference on Information Fusion, 2000, pp.
21–33, paris, France.

[21] R. HAENNI N. LEHMANN, “Implementing belief function computa-
tions,” International Journal of Intelligent Systems, no. 18, pp. 31–49,
2003.

[22] F. CARON, S.N. RAZAVI, J. SONG, P. VANHEEGHE, E. DUFLOS,
C. CALDAS, and C. HAAS, “Locating sensor nodes on construction
projects,” Autonomous Robots, vol. 22, no. 3, pp. 255–263, 2007.


