
A Verified MATLAB Toolbox for the
Dempster-Shafer Theory

Ekaterina Auer, Wolfram Luther, Gabor Rebner, Philipp Limbourg
Computer and Cognitive Sciences (INKO)

University of Duisburg-Essen
Duisburg, Germany

Email: {auer, luther, rebner}@inf.uni-due.de, p.limbourg@uni-due.de

Abstract—The importance of the Dempster-Shafer theory
(DST) for modeling and propagating uncertainty has grown in
the recent past. An obstacle for wider application of this theory
in industrial practice is the lack of software support for analysts.
The few tools available depend on floating point arithmetic and
do not consider the inherently interval-based nature of theDST
to the full extent. Therefore, the obvious next step is to combine
the DST ideas with those from interval arithmetic. An additional
advantage of employing interval methods is the guarantee that
the results obtained on a computer are mathematically correct.

In this paper, we introduce a new verified DST implementation
for MATLAB based on the previously developedIPP TOOLBOX.
It extends this software using interval arithmetic and simulta-
neously takes care of the rounding errors. After giving a short
overview of the Dempster-Shafer theory and interval methods,
we describe the main features of the new toolbox and show its
potential using several examples.
Keywords: Dempster-Shafer, interval arithmetic, MAT-
LAB, INTLAB.

I. I NTRODUCTION

The experience of the last decades shows that while the
design process in many application fields becomes shorter
due to time-to-market pressure, the requirements on numerical
accuracy and performance grow stricter. However, engineers
lack precise knowledge regarding the process and its input
data in early design stages. Therefore, to assess how reliable
a system is, they have to deal with uncertainty. That is the
reason why methods to propagate uncertainties through the
system gain more and more importance.

The overall imprecision in the outcome can be specified by
providing upper and lower bounds on all possible results using
interval or other verified methods. As further options, proba-
bility theory, the Dempster-Shafer theory or the Bayes theory
can be used. In this paper, we concentrate on the use of the
Dempster-Shafer theory (DST), the significance of which for
modeling and propagating uncertainty has grown recently [1].
However, the few existing DST implementations [1], [2], [3]
rely on floating point arithmetic and do not exploit to the full
extent the inherently interval based nature of the theory.

A method is calledverifiedif it guarantees the correctness of
its output. In this context, interval arithmetic [4] is a widely
used approach to verifying results obtained on a computer.
It provides a (multidimensional) box described in terms of
floating point arithmetic which is guaranteed to contain the
exact result. Besides allowing for uncertainty in parameters,

interval arithmetic helps to generate more realistic mathemat-
ical models or to take into account measurement errors.

In this paper, we describe a new DST implementation that
makes use of the advantages of interval methods. The DSI
TOOLBOX (Dempster-Shafer with intervals) is a MATLAB

package and based on the software IPP TOOLBOX [1] avail-
able in MATLAB [5] and R [6]. The new implementation is
designed to define, aggregate and evaluate precise Dempster-
Shafer structures by using directed rounding and verified meth-
ods made accessible in MATLAB by the INTLAB library [7].

This paper is structured as follows. First, we give a brief
introduction to the fundamentals of the DST and the interval
methods. In the next section, we describe the main features of
the DSI TOOLBOX and discuss several basic usage examples
after a short overview of the IPP and INTLAB libraries. Over
the course of section IV, we exemplify the applicability of
the new software using tasks from fault tree analysis and
non-monotonous uncertainty propagation. We conclude by
recapitulating the main results and providing a perspective for
future research.

II. FUNDAMENTALS

In this section, we describe the fundamentals of the
Dempster-Shafer theory and interval methods briefly.

A. The Dempster-Shafer Theory

The Dempster-Shafer theory [8] allows us to combine
evidence from different experts or other sources and provides
a measure of confidence that a given event occurs. A special
feature of this theory is the possibility to characterize uncer-
tainties arising because of the lack of knowledge as discrete
probability assignments associated with the power set of values
X . Due to the presence of imprecision, it is only possible to
compute a lower and an upper bound (belief and plausibility)
of the probability of a subset ofX .

The DST equivalent of a random variable is the belief vari-
able, which is characterized by its basic probability assignment
(BPA) m. If A1, . . . , An are the sets of interest where each
Ai ∈ 2X , then

m : 2X → [0, 1],

n
∑

i=1

m(Ai) = 1, m(∅) = 0. (1)

In the continuous case, we restrict the setsAi to intervals
of the form ([x, x]), x ≤ x, where x denotes the lower
bound or infimum andx the upper bound or supremum, for
computational simplicity. Such intervals can be considered as
evidence by an expert, for example, [10,20] hours lifetime for
a sensor. The restriction in (1) concerning the sum of masses
shows the necessity to normalize real life evidence because
experts tend to provide BPAs for which it does not hold.

The plausibility (”worst case”) and belief (”best case”)
functions can be defined with the help of the BPAs for all
i = 1 . . . n andY ⊆ Xas

PL(Y) :=
∑

Ai∩Y 6=∅

m(Ai), BEL(Y) :=
∑

Ai⊆Y

m(Ai). (2)

Every elementA with a mass unequal zero is known as a
focal element. All focal elements including their masses are
called a random set. If two or more experts provide different
estimations in the same areas, the BPAs have to be aggregated.
There exist several methods for this purpose [8], of which
Dempster’s rule and mixing based on arithmetic averaging are
those used in this paper.

B. Interval arithmetic

Interval arithmetic ([4] and the references therein) is a
well developed field of mathematics with applications in many
areas of engineering, medical science, (bio)mechanics and
others. It belongs to the group of the verified methods, that
is, methods that guarantee the correctness of the outcome of
a simulation using mathematically exact proofs.

An interval [x, x], wherex is the lower,x the upper bound,
is defined as[x, x] = {x ∈ R|x ≤ x ≤ x}. For any operation
◦ = {+,−, ·, /} and intervals[x, x], [y, y], the corresponding
interval operation can be defined as[x, x] ◦ [y, y] =
[min(x ◦ y, x ◦ y, x ◦ y, x ◦ y),max(x ◦ y, x ◦ y, x ◦ y, x ◦ y)].
It can be shown that the result of an interval operation is
also an interval. Every possible combinationx ◦ y with
x ∈ [x;x] andy ∈ [y; y] lies inside this interval. (For division
of intervals, usually0 /∈ [y, y] is assumed.)

To be able to work with this definition on a computer using
a finite precision arithmetic, the concept of machine intervals
is necessary. They are represented by floating point numbers
for the lower and upper bounds. To obtain the corresponding
machine interval for the real interval[x, x], the lower bound
is rounded down (▽) to the largest representable machine
number equal or less thanx, and the upper bound is rounded
up (△) to the smallest machine number equal or greater than
x. These notions can be extended to define interval vectors
and matrices.

There is a number of software libraries implementing this
theory in different programming languages such as C++ or
FORTRAN and computer algebra packages such as MAPLE or
MATLAB .

III. DSI TOOLBOX — THE DEMPSTER-SHAFER THEORY

WITH INTERVAL ARITHMETIC

The main focus of this section is the newly implemented
DSI TOOLBOX which combines the DST approach with rigor-
ous interval methods. This toolbox is implemented in MATLAB

and uses INTLAB for basic interval functionalities. After a
short overview of the IPP TOOLBOX from which the DSI
software originated, we outline the functionalities of INTLAB
used by the DSI and finally describe the new toolbox in detail
and with usage examples.

A. IPP TOOLBOX

The Imprecise Probability Propagation (IPP) Toolbox [1]
is a collection of methods for uncertainty quantification and
propagation in the framework of the Dempster-Shafer theory
and imprecise probabilities. This library uses floating point
arithmetic as a computational basis. It is available as a
MATLAB version [5] and an extended R package [6]. The
IPP TOOLBOX contains a broad range of methods for practical
application of the DST such as construction of belief functions
from bounds on distributions, computation of empirical BPAs
from data, evaluation of BPA fits using Kolmogorov-Smirnov
tests, various aggregation methods, propagation through arbi-
trary monotonous and non-monotonous system functions and
computation of statistical properties. The toolbox was applied
in several case studies, such as [9], [10].

The feature we would like to concentrate on is the propa-
gation of uncertainties through non-monotonous system func-
tions. This could be a major obstacle for using DST in practice.
In most applications, the analysts either employ a Monte Carlo
sampling approach or simply propagate all focal elements
of (small) discrete BPAs through the system. In each case,
a large amount of intervals need to be propagated through
the system functionF (x). In the conventional DST, this is
formally done by solving two optimization problems for each
(multidimensional) interval[x, x]:

[F , F] = F ([x, x]) = [min
x∈[x,x]

F (x), max
x∈[x,x]

F (x)].

The amount of computing power required in this step varies
widely with the complexity of the function representing the
system model. While monotonous functions do not increase
it substantially, complex, non-monotonous ones render the
propagation task very time consuming.

The IPP supports three different propagation algorithms:
Monotonous: A fast algorithm for monotonous functions (in-
creasing/decreasing/mixed). Only the two point valuesF (x),
F (x) have to be evaluated because of the monotony property.
Regular: An approximation algorithm that evaluates the func-
tion value in all corners of the focal element. The assumption
is, that the extrema ofF ([x, x]) are located on the boundary
of [x, x].
Optimization: An algorithm compatible with arbitrary non-
monotonous functions, which uses gradient descent optimiza-
tion to propagate focal elements.

In case of non-monotonous functions, theregular algorithm
is fast but provides only a coarse approximation of the true
propagation result, whereas theoptimizationalgorithm can be
very time consuming, as one gradient descent run is carried
out for each interval propagated. In section IV-B, we show that
such computations can be performed more effectively using
interval methods in the newly developed DSI-TOOLBOX.

B. INTLAB — Interval Laboratory

INTLAB [7] is a M ATLAB library implementing the basics
of (multiple precision) interval arithmetic for real and complex
numbers (cf. section II-B) along with providing linear algebra
methods for intervals. Besides, it features automatic differ-
entiation up to the second order, rigorous real and complex
interval standard functions, accurate summation, dot product
and matrix-vector residuals.

We can use either the infimum-supremum notation[x, x]

or midpoint-radius notation
〈

x+x

2 , x−x

2

〉

for intervals. Point
intervals in INTLAB can be defined by using the function
intval(x), wherex is a real number. A mathematically cor-
rect interval enclosure of the real numberx that is not simulta-
neously a floating point number is given byintval(’x’).
By specifying the number as a string, we can ensure that
the result is enclosed between the greatest machine number
smaller and the smallest machine number greater thanx.

One important feature of this library is directed rounding.
With the help of the INTLAB functionsetround(par),
it is possible to take influence on the current rounding mode.
If par is equal to one the rounding mode is set to positive
infinity (or upwards), forpar=-1 to the negative infinity
(or downwards) and forpar=0 the mode is set to round-
to-nearest. This function can be used to generate an exact
enclosure of a piece of evidence.

INTLAB supports a number of interval standard functions
such as sine or cosine. Using them, it is easy to evaluate an
interval enclosure of an arbitrary function given as a combi-
nation of standard ones and interval operations{ + , - , · , / }.

The current version of INTLAB is written completely
in MATLAB to assure the ability to run identical code on
different machines. The requirement for such portability is that
the considered architecture uses IEEE754 arithmetic and can
switch the rounding mode permanently. It is important to keep
in mind that interval vector and matrix operations are fast in
INTLAB due to its extensive employment of BLAS (basic
linear algebra subsystems) routines. Rump shows in [11] that
the unrestricted use of the midpoint-radius interval notation
and BLAS type three leads to very fast algorithms. However,
loops and nonlinear tasks slow down the computations which
is characteristic of MATLAB as a whole.

C. Main Features of theDSI-TOOLBOX

The IPP TOOLBOX described in section III-A uses floating
point arithmetic and therefore does not exploit to the full extent
the inherently interval nature of the DST. With this software
as a basis, we developed a new verified implementation called
DSI TOOLBOX (Dempster Shafer with intervals) for MATLAB

to work with rigorous DST structures that rely on interval
calculus and directed rounding. DSI contains both functions
from the IPP TOOLBOX, which were rewritten to take into
account all rounding errors and adjusted to intervals, and
newly designed functions.

The main task of the new toolbox is to guarantee correctness
of the solution. For that purpose, we take care of all rounding
errors that might occur during the computation by enclosing
real numbers in their corresponding machine intervals. Note
that we do not take into account the modeling error present
in DST or other probability based methods. A further goal
is to provide enclosures with minimal overestimation, thatis,
with the minimum degree of conservativeness or pessimism.
That is why we use sharp matrix multiplication provided by
INTLAB which, however, needs slightly more CPU time.

Using DSI, we can define DST structures either directly
by their focal elements with masses (routinedsistruct)
or by cumulative distribution functions such as the tri-
angular or the Weibull distribution (dsitriangleinv,
dsiweibullinv). In the first case, the masses of the
resulting structure have to be normalized according to Eq. (1).

The normalization is not trivial in our case because we
represent masses as point or very tight intervals to provide
verified solutions. However, it is not our goal at the moment to
introduce interval masses with diameters considerably greater
than a couple of ulps because it is difficult to think of a
practical interpretation in this case. Our approach is as follows.
If a random set consists ofn focal elementsA1, . . . , An

with interval massesm(Ai) = [m(Ai),m(Ai)], then the
normalized massesmnew(Ai) for i = 1 . . . n are computed
as a hull of the two intervals

m(Ai) /

△
n
∑

j=1

m(Aj)

 , m(Ai) /

▽
n
∑

j=1

m(Aj)

 .

To optimize the CPU time, we compute all steps using vector-
matrix operations.

Let us consider further functionalities of the DSI TOOLBOX

using the following example. Two experts give estimations
about a robot failure. The first expert provides an assessment
in form of a triangular distribution function. The important
feature which the DSI TOOLBOX offers in this case is the
possibility to define it with an uncertain mode and lower/upper
bounds. To obtain the corresponding BPA, the user has to
specify the number of samples to be computed. For a sub-
division consisting of floating point numbers, which means
a subdivision of purely point intervals in our framework, we
recommend using2y samples with an arbitrary positive integer
y. In Fig. 1, the solution space of the triangular distribution
with lower bound[1, 2], upper bound[10, 12], mode[4, 6] and
212 samples is shown.

This space lies between the belief and the plausibility
function defined in Eq. (2). To compute plausibility, all upper
bounds of the masses are sorted in the ascending order and
stored as point intervals in a matrix. To compute function

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

units of interest

ev
id

en
ce

Pl
Bel

Figure 1. Triangular distribution with lb=[1, 2], ub=[10, 12] and mode=[4, 6]

values, we iterate from one to the length of the matrix adding
the current element to the result of the last iteration. The
solution array is sorted in the ascending order with the last
element equal to one. The belief function can be computed in
parallel to the plausibility by using the lower bounds.

The second expert provides an assessment in form of a BPA
directly. Using the DSI TOOLBOX, we define the BPA by the
routine

dsistruct(
[infsup(1,3),2/6;infsup(1.5,6),1/6;
infsup(5,15),3/6]).

Here,infsup(x,y) is the standard INTLAB function to
define an interval in infimum-supremum notation. In this
example, the first focal element[1, 3] has the mass2/6, the
second ([1.5, 6]) 1/6 and the third ([5, 15]) 3/6. In Fig. 2, the
solution space of this BPA is shown.

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

units of interest

ev
id

en
ce

Pl
Bel

Figure 2. Solution space for expert two

To aggregate these two structures, we use
Dempster’s rule and mixing. DSI provides the routines
dsidempstersrule(x) anddsiwmixing(x,y) where
x is an array containing all BPAs (two in our example) and
y is an array of corresponding weights.

The main issue with these two functions is the CPU time.
It is acceptable for the weighted mixing because only matrix
multiplication is in use. In contrast, Dempster’s rule needs to
be computed for every element in the first BPA giving a com-
plexity of O(n2). In contrast to IPP TOOLBOX, we evaluate
necessary intersections using matrices and the fast INTLAB
functionintersect(x,y) to accelerate computations.

In Fig. 3, the results of the application of Dempster’s rule
and unweighted mixing for the two BPAs from our example
are shown. The BPAs and their aggregation by Dempster’s
rule are computed in 6.932 seconds on an Intel Core 2 DUO
@ 2.1 GHz platform with 2 GB RAM. The overall CPU
time for computing the BPAs and their unweighted mixing
is 0.0925 seconds only on the same platform. Fig. 3 shows in
addition that Dempster’s rule aggregates only for intersecting
focal elements while the mixing takes into account all of them.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

units of interest

ev
id

en
ce

Pl: Dempsters Rule
Bel: Dempsters Rule
Pl: Mixing
Bel: Mixing

Figure 3. Aggregation by Dempster’s rule and unweighted mixing

IV. EXAMPLES

In this section, we first show briefly how fault tree analysis
can be performed using the DSI TOOLBOX and then con-
sider a simple example of uncertainty propagation through a
non-monotonous system function. In each case, we compare
obtained results with those from the IPP TOOLBOX.

A. A Simple Example of Fault Tree Analysis

The Dempster-Shafer theory can be used in fault tree
analysis [9]. Consider a robot arm consisting of three rigid
links L1, L2, L3 and three jointsJ1, J2, J3 shown in Fig. 4.
Each joint is driven by an autonomous motor. At the end of
the arm, a utility is mounted which can only be manipulated
by modifying the angles of the three joints.

Figure 4. Robot with three joints

The distribution on the time to failure for each motor is
assessed by three experts. The first expert estimates it for
J1 and J2 to be in intervals[700, 1400] and [1000, 1500],
respectively. The second expert provides an opinion in form
of cumulative distribution functions for motor two and three.
The failure distribution for motor two follows a triangular
distribution between 700 and 1200 hours, with an unsure mode
of [800,900], for motor three the same distribution in the
interval [900,1500] hours with mode [1300,1400]. The third
expert estimates motor three only and states that its time to
failure is between 1000 and 1200 hours of work with 80
percent confidence and between 1250 and 1700 hours with 20
percent confidence. We suppose that the robot is out of order
only if all motors fail at the same time which corresponds to
the fault tree in Fig. 5.

Figure 5. A fault tree for the robot

In an analogy to the definition from [12], we can compute
the failure probability at the AND gate by using Dempster’s
rule.

We aggregate the evidence for the motors with the help
of the unweighted mixing because every expert has the same
confidence level. We prefer mixing to Dempster’s rule in
this case because the latter ignores focal elements without

intersection which leads to information loss. After that, we
obtain the belief and plausibility for the root element fromthe
fault tree, that is the overall failure probability for the robot
shown in Fig. 6.

Figure 6. Solution space for robot failure with210 samples

The probability of a complete fault is zero for less than 900
hours of work. The robot fails with the certainty of 100 percent
after 1400 hours. Note that the experts and their estimations
are hypothetical in this example. The results are therefore
not objective. The plausibility and belief values for failure
probabilities between 900 and 1400 hours can be computed
by the functiondsigetprob(x).

To provide a comparison between the IPP (the R version)
and DSI toolboxes, we start a benchmark with 200, 1024 and
2048 samples. IPP supplies two sampling techniques called
dsodf anddsadf [1], [13], the former of which is an outer
discretization generating small and sharp intervals whilethe
latter is more conservative and computes larger intervals.In
Tab. I, we show results obtained with both methods.

Table I
COMPARISON OFCPUTIMES FOR THE FAULT TREE

samples 200 1024 2048

IPP (dsadf) 0.4641 s 2.9110 s 11.3253 s
IPP (dsodf) 0.5226 s 4.0561 s 11.3214 s

DSI 0.3368 s 1.6899 s 4.5552 s

Each cell of the table contains the corresponding CPU time
at the same platform as in section III. The DSI toolbox is
faster for this example than the IPP.

B. Uncertainty Propagation for Non-monotonous Functions

In this example, we demonstrate the potential of using
interval methods and the DSI TOOLBOX for propagation of
uncertainties through non-monotonous system models. We
consider the functionsinx2, which is simple, but highly non-
monotonous. The argumentx follows a normal distribution

with the uncertain lower and upper bounds lying in intervals
[0, 0.1] and [99.9, 100], respectively. We use the Monte Carlo
sampling approach to propagate this uncertainty through a
hypothetical system described bysinx2 in DSI and IPP (the
R version). In the latter toolbox, themonotonousand regular
methods described in section III-A produce wrong results. The
only possible propagation algorithm for IPP is therefore the
optimizationbased one, which we used for the comparison.
The results are shown in Tab. II and in Fig. 7 (for 1024 samples
with dsodf sampling method in IPP).

As demonstrated in the Table, the DSI TOOLBOX is con-
siderably faster than the IPP. The reason for this is that the
DSI exploits the ability of interval methods (and INTLAB
in particular) to compute interval enclosures of functionsover
interval arguments directly rather via optimization problems.
‘Directly’ means that enclosures of functions consisting of
combinations of{+,−, ·, /} and standard functions such as
trigonometric ones as well as their compositions are evaluated
by substituting their interval counterparts for them on an
operation-by-operation basis (the so called natural interval
extension). That is, the optimization problem for the complex
original function does not have to be solved. For such interval
extensions, the relationFOpt ⊆ FNat always holds, where
FOpt is the enclosure obtained via optimization,FNat the
natural one.

Table II
COMPARISON OFCPUTIMES FOR THE NON-MONOTONOUS PROPAGATION

samples 100 1000 1000

IPP (dsadf) 0.2850 s 2.7190 s 47.518 s
IPP (dsodf) 0.2870 s 2.6920 s 48.407 s

DSI 0.0585 s 0.8237 s 8.1557 s

Note thatFOpt obtained by a floating point based method
is not proved to containall possible solutions whereasFNat

is. However,FNat might become too conservative if the
function is evaluated for interval arguments with large widths
(cf. Fig. 7). The results obtained with IPP lie inside the
verified bounds provided by DSI. In this case, the reason
is not only the conservativeness of enclosures because the
arguments are tight intervals. The difference might also result
from inaccuracies of the floating point based algorithm.

V. CONCLUSIONS ANDOUTLOOK

In this paper, we presented a new toolbox for MATLAB

implementing a combination of the Dempster-Shafer theory
with rigorous interval arithmetic. With its help, it was possible
to work with DST structures in a natural way and take into
account all rounding errors. We demonstrated the applicability
of the box using several examples and shown that it worked
faster than the floating point based IPP TOOLBOX from which
it originated. Besides, we demonstrated that it was more
advantageous to use DSI for uncertainty propagation through
systems described by non-monotonous functions, both in terms
of CPU time and correctness of results.

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

solution space of sin(x2)

ev
id

en
ce

DSI: Pl
DSI:BEL
IPP:PL
IPP:Bel

Figure 7. Propagation of non-monotonous functions

Our future work will consist of combining the verified DST
with the fault tree analysis and Markov chains.

REFERENCES

[1] P. Limbourg, “Imprecise probabilities for predicting dependability of
mechatronic systems in early design stages,” Ph.D. dissertation, Univer-
sity of Dusburg-Essen, 2007.

[2] A. Martin, “Implementing general belief function framework with a
practical codification for low complexity,” inAdvances and Applications
of DSmT for. American Research Press, 2009, vol. Collected Works,
Vol. 3, pp. 217–273.

[3] G. Nassreddine, F. Abdallah, and T. Denoeux, “A state estimation
method for multiple model systems using belief function theory,” in
Information Fusion, 2009. 12th International Conference on Information
Fusion (FUSION ’09), 2009, pp. 506–513.

[4] E. Moore, B. Kearfott, and M. Cloud,Introduction to Interval Analysis.
Society for Industrial Mathematics, 2009, vol. 1.

[5] “The mathworks deutschland - matlab - the language of technical
computing,” 2009. [Online]. Available: http://www.mathworks.de/
products/matlab/

[6] “The r project for statistical computing.” [Online]. Available:
http://www.r-project.org/

[7] S. Rump, “Intlab - interval laboratory,”Developments in Reliable Com-
puting, pp. 77–104, 1999.

[8] S. Ferson, V. Kreinovich, L. Ginzburg, D. Myers, and K. Sentz,
“Constructing probability boxes and dempster-shafer structures,” no.
SAND2002-4015, 2003.

[9] P. Limbourg, R. Savic, J. Petersen, and H. D. Kochs, “Modelling
uncertainty in fault tree analyses using evidence theory,”Journal of Risk
and Reliability, vol. 222, pp. 291–302, 2008.

[10] E. de Rocquigny, N. Devictor, and S. Tarantola,Uncertainty in Industrial
Practice - A guide to quantitative uncertainty management. United
Kingdom: John Wiley & Sons, 2008, vol. 1.

[11] S. Rump, “Fast and parallel interval arithmetic,”BIT, vol. 39(3), pp.
539–560, 1999. [Online]. Available: http://www.ti3.tu-harburg.de/paper/
rump/Ru99b.pdf

[12] H. Traczinski, “Integration von algorithmen und datentypen zur vali-
dierten mehrkörpersimulation in mobile,” Ph.D. dissertation, Universität
Duisburg-Essen, 2006.

[13] F. Tonon, “Using random set theory to propagate epistemic uncertainty
through a mechanical system,”Reliability Engineering and System
Safety, vol. 85, no. 1-3, pp. 169–181, 2004.

