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Abstract— This paper illustrates how we detect abnormal 
behaviour using evidential analysis of the conflict signal 

produced by Transferable Belief Model (TBM) fusion. With 

our paradigm, we focus on the problem of sensor dysfunction 

whilst taking the sensor output into account. In order to 

describe normal sensor output, the prediction phase is run 

using a Markov Chain Model. The abnormal sensor output is 

detected by merging the monitored and the predicted mass 

functions using the TBM. We implement two techniques: the 

first one employs a probabilistic Markov Chain and the second 

one employs an evidential approach. The experimental results 

are subsequently used to evaluate our diagnostic method and 

to show the superiority of the generalised evidential 

framework 

Keywords: TBM, Fusion, Abnormal behaviour, 

Evidential prediction, Conflict analysis. 

I. INTRODUCTION 

Our research is anchored in the TBM [7] framework and 

targets information fusion in smart homes. A smart home is a 

habitat in which heterogeneous sensors are integrated. 

Owing to this model, the uncertain nature of the information 

sensors, and specifically the potential conflict between 

sources, are taken into account. Our work is not situated at 

the signal level but at the symbolic level and its objective is 

to detect behavioural drifts of a particular sensor amongst 

others. In order to detect abnormal behaviour, we first need 

to establish what is considered to be normal behaviour. In 

our project, a sensor possesses different symbolic states 

through which it can progress. Different techniques have 

been put forward to detect sensor anomalies. The most 

common ones can be classified as: 

1) The sensor is perfectly modelled and the provided 

values are constrained. If the values exceed the boundaries, 

we can conclude that there is a malfunction. 

2) Several sensors produce redundant data on the same 

variable. By comparing the sensors, the anomaly between 

two sources can be determined [6]. 

3) A prediction-verification algorithm permits to detect 

the change of state. An evidential approach [2] or a Kalman 

filtering approach [1] can be used to manage fault detection 

in sensor information. 

With the first method the integrity of data can be verified, 

but not their coherence. As we only use one sensor, the 

second method is not applicable in our case. This means that 

we will focus on the third method. As we have chosen a 

predictive approach, we have opted for a sensor modelling 

by a Markov Chain [8]. Such a model can predict the future 

by using the present without knowing the past. Many recent 

works propose an evidential alternative. E. Ramasso and M. 

Rombaut were the first to introduce the principle of 

behavioural modelling with an HMM in order to detect the 

changes of states in a video [2]. E. Ramasso in [5] deals with 

the problem of fault diagnosis with an extension of HMM: 

the evHMM. D. Mercier and T. Denoeux address the 

problem of modelling of sensor reliability with contextual 

discounting [10]. A proposition to build a predictive belief 

function from statistical data is made in [11] and could be 

used in this context. More generally, the use of evidential 

classification processing [12] would be particularly well 

adapted to this problem of sensor diagnosis. 

Paper organisation: in this paper we will first present a 

brief outline of the TBM and then how we model a sensor 

with a Markov Chain. We will then go on to detail the 

detection of abnormal behaviour of a single sensor. Next, we 

will propose a solution based on a predictive evidential 

matrix not correlated to Markov Chain processing. This is in 

fact the major difference with the preceding works exposed 

in [5]. Finally, we will validate the model with experimental 

results and we will compare a Markov Chain approach and a 

generalised evidential approach. 

II. BRIEF OUTLINE OF THE TBM THEORY  

In this paper, we use the TBM, Transferable Belief 

Model, a variant of Dempster-Shafer Theory [7]. This 

framework lets us model and combine evidence in order to 

make a decision. The TBM supposes a frame of discernment 

(FoD) Θ which contains symbolic hypotheses representing 

the exclusive and exhaustive solutions to the problem. Θ =  { 

Hi, i = 1..n}, where  Hi ∩ Hj = ∅ ∀i, ∀j with i ≠ j . 

Therefore we can define the power set 2
Θ
 which contains the 

Singletons hypotheses and all the disjunctions of hypotheses 

{ } { }Θ∪∅=Θ⊆=Θ ,...,,,...,,/2 2121 HHHHHAA n
. This prior 

power set 2
Θ
 defines the frame of definition for the belief 

functions; hence the BBA’s (“basic belief assignments”) are 

built. Finally a collection of BBA’s is called “a source of 

evidence” or “a mass function”. It is a map m from 2
Θ
 to 
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Am , where m(A) represents the 

evidence that corresponds to the proposition A 

(independently of the evidence on the hypothesis composing 

A in the case of A being a disjunction). 

Therefore, and that is its main interest, the TBM can 

model the doubt and the total ignorance. It is the major 

advantage contrary to the probability theory. The total 

ignorance is defined by a BBA named the vacuous BBA: 

1)( =Θm , and Θ≠∀= 20)( AAm . 

In the case where several experts examine the data, 

several sources of evidence appear. We have to combine the 

opinion of the different experts before making any decision. 

The combination process is achieved by the application of 

operators on all the sources of evidence. The TBM model is 

particularly well adapted to isolate the resulting conflict 

from a data fusion. The Smets operator (i.e. conjunctive 

operator, “∩”) is then used. Given two distinct BBAs, 

ms1(A) and ms2(B), defined on the same FoD, the 

combination is:  ∑
=∩

=
CBA

SS BmAmCm )().()( 21  

The modelling of evidence and combination of sources 

constitute the first phase named “Credal Level”. The next 

stage (the pignistic level) is in charge of the decision 

making. It consists of computing the probability named 

“pignistic probability” from the BBA resulting from the 

combination process.  

Pignistic probability (BetP) 
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Then the decision is made by selecting the hypothesis 

with the maximal pignistic probability. 

TBM decision 

)]([maxarg HiBetPHj
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III. BEHAVIOUR MODELLING WITH A STOCHASTIC PROCESS 

Our diagnostic method to detect abnormal sensor 

behaviour implies that we first need to model normal sensor 

behaviour. A Markov Chain in discrete time is a sequence 

X0, X1, X2, ... with random variables. The set of values is 

called the state space with the value Xn being the process 

state at the time n. If the conditional probability distribution 

of Xn+1 of the passed states is a function of only Xn, then:  

P(Xn+1 = x | X0, X1, X2,…, Xn) = P(Xn+1 = x | Xn), Where x 

is any given state in the process. This probability distribution 

can be represented by a transition matrix T. This transition 

probability matrix represents the evolution of a process in 

time. An example will be given, based on a sensor with three 

known states X0, X1, and X2. There is a transition probability 

Pij∈[0,1] allowing the passage of state Xi to Xj.  

Normal output of a sensor is correlated to its actual state 

and its previous state. If the sensor correctly follows the 

evolution of the Markov Chain, (i.e. a transition probability 

is non void for the passage of one state to the next), then its 

output will be considered to be normal. However, if the 

sensor transits from one state to the next with a void 

transition probability, then its output is considered to be 

abnormal. In this paper we suggest a comprehensive 

formalism with which these supposedly impossible (relative 

to our knowledge) transits can be detected.  

IV. ANOMALY DETECTION BY MERGING 

PREDICTIONS/OBSERVATIONS 

A. Proposed synopsis 

Inspired by the different filtering methods discussed 

above, we have developed a dynamic fusion process that 

provides a prediction based on one or several observations. 

In the figure below, we distinguish four main stages in order 

to detect behavioural anomalies (Figure 1).The proposed 

method based on a Markov-Chain, requires that the system 

(analogical for instance) is digitized into distinct states. Two 

approaches for the prediction stage are proposed: (1) one 

obtained from a Markov Chain (§IV-B), (2) one obtained 

with an evidential transition matrix (§IV-C). The point 

discussed in §IV-B, is one of the main contributions of this 

paper. The results are compared in the section V. 

1. Observation Stage 

The observation is the initial mass function at the 

time n, provided by the sensor that needs to be 

diagnosed. 

2. Prediction stage 

The prediction is the operation with which we 

estimate the state of the sensor at time n+1. 

3. Fusion stage 

The fusion is the operation with which we combine 

the new observations and the predictions.  

4. Verification/Detection Stage 

The verification is the operation by which we 

validate the result of the fusion by examining the 

conflict signal. We also detect the discrepancy 

between the observation and the prediction. 

Figure 1: Synopsis of the proposed method. 

 

Observation Stage, Stage 1: The observation can be the 

output of a single sensor but it can also be the output of a 

dynamic or static fusion process. Generally speaking, the 

observation (sensor output) provides a mass function 

mobservation on the FoD Θ composed by the possible Xi states 

of the sensor. 

Prediction Stage, Stage 2: (see our two propositions 

detailed in §IV-B and §IV-C). Once this observation is 

attained, the predicted mass function mprediction can be 

calculated from an evolution model [8]. In our case, this 

model is the Markov Chain that represents the sequence of 

the possible states and that enables us to establish a 

Markovian prediction. 

 



 

Fusion Stage, Stage3: To merge the prediction mass 

function mprediction and the observation mass function 

mobservation, we use the conjunctive Smets operator “∩” to 

isolate the conflict in the FoD Θ resulting from the fusion 

according to: mfusion = mprediction ∩ mobservation 

Verification/ Detection Stage, Stage4: With the above 

formula, we compute and isolate the conflict value so that 

we can analyse its temporal evolution and detect a 

behavioural anomaly. This stage is detailed in §IV-D. 

B. The Markovian prediction, (Stage 2) 

The prediction input is a probabilistic observation 

Vobservation vector that corresponds to the state of the sensor at 

time n. We obtain the computation of the Markovian 

prediction from the transition matrix T, which is a Vprediction 

vector of the same size as the Vobservation vector, by: 

Vprediction = Vobservation × T                                          (1) 

If we take a transition matrix T (X0, X1, X2) empirically 

defined as: 
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T  and an observation vector Vobservation 

= (1 0 0) , i.e. the process is in state A0 at time n, then we 

compute the prediction vector Vprediction = Vobservation × T = 

(0.5 0.5 0). This predicts that when the process is in state A0 

with a probability of 1, it will be in state A0 or A1 at the 

next point in time. This shows that the Markovian prediction 

uses a probability set as input and renders a probability set 

as output, in other words a predicted probability set. As the 

entry of our system is a sensor that renders an observation 

mass function mobservation (result of an evidential fusion), we 

need to proceed to a pignistic conversion phase (first 

conversion, Evidential ⇒ Probabilist). This allows the 

Markovian prediction to be computed from a single 

observation mass function. Equation (2) presents the method 

(conversion) to compute the pignistic probability (see §II): 
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The Markovian prediction of the probability set can then 

be obtained. This probability set then has to be converted 

into a prediction mass function to allow us to merge the 

prediction and the observation (second conversion, 

Probabilist ⇒ Evidential), i.e. the stage 3, Fusion Stage. 

 

Evidential conversion:  

Remark: The predicted set of probabilities we obtain can 

be considered as a pignistic distribution. Consequently, there 

are numerous mass functions that correspond to this 

pignistic. In a general setting, the choice of the mass 

function must respect the MIP (minimum information 

principle). [4] This means that the least specific function 

needs to be chosen. This solution was not retained as the 

MIP function would compute fewer conflicts in ulterior 

fusion operations; i.e. it would be contradictory to our 

strategy of analysing the conflict signal variations in order to 

detect anomalies. 

As our probability set is complete, (∑ Vprediction(Xi) = 1) 

and considering the previous remark, it can be directly 

converted into a mass function. The probabilities of the 

hypothetical Singletons are then directly placed on the mass 

sets of the corresponding hypothetical Singletons through:  

mprediction(Xi) = Vprediction (Xi)                                      (3) 

The focal elements of our mass function are only 

singleton hypotheses and ours is clearly a Bayesian mass 

function. Hence, the masses of the non Singleton hypotheses 

are void. 

C. The Markovian prediction in an evidential sense, 

(Stage 2); second proposition 

As discussed above, in a Markovian prediction 

framework, we don’t work directly with a mass function but 

with a probabilities set, necessitating a pignistic conversion 

process. The process of converting masses to probabilities 

engenders a loss of information on the representation of 

symbolic data. The notion of doubt is absorbed and the 

advantages related to the belief functions are lost. We have 

therefore endeavoured to unite the formalisms used in our 

perception architecture and we offer a transformation of the 

transition matrix in an evidential sense. This transformation 

works directly with mass functions. We convert the 

probabilistic Markov Chain transition matrix into an 

evidential Markov Chain transition matrix. This conversion 

consists in modelling the hypotheses’ disjunctions directly 

into the matrix.  

For an FoD Θ, we obtain a transition matrix named 

evidential TCred sized (2
Θ
-1)×(2

Θ
-1):  

TCred =[X0, X1, X2, X0∪X1, X0∪X2, X1∪X2, Θ] × 

          [X 0, X1, X2, X0∪X1, X0∪X2, X1∪X2, Θ] 

 

This evidential Markov Chain is given for a sensor with 

the three states X0, X1, X2. This evidential transition matrix 

redistributes the transition probabilities on the hypotheses 

and on the hypotheses’ disjunctions. For each state or 

disjunction of states, we obtain a probability Pij ∈ [0,1] 

allowing the passage of state Xi to Xj with i,j ∈ 2Θ
. This 

manipulation implies that we consider the disjunction of 

states as states in their own right and they represent an 

intermediate state. The passage from one state to the next is 

rendered smoother as a result of the passage via an 

intermediate state. 

The evidential Markov Chain renders the prediction 

process more reliable because the two stages of pignistic 

mass conversion to probabilities and vice versa are no 

longer. It suffices to use an evidential observation vector 

Vobservation that is consistent with the sensor’s state at time n. 

The computation of the evidential Markovian prediction 



 

from the evidential transition matrix TCred is obtained in the 

same manner: 

Vprediction = Vobservation × TCred                                  (4) 

D. Detection of an anomaly, (Stage 4) 

To detect abnormal behaviour of the sensor, we use the 

Smets operator to observe the temporal conflict evolution 

mfusion(∅) that emanates from the fusion between the 

observation mass function  mobservation and the prediction 

mprediction. Our experimental results show that abnormal 

behaviour can be characterised by a significant increase of 

conflict. The conflict value analysed here is the sum of the 

auto-conflict and conflict produced by the combination. As a 

matter of fact, when the prediction and the observation are in 

discord, the fusion of the mass functions mobervation and 

mprediction provokes an increase in conflict mfusion(∅). Our 

experimental results also show that the conflict is subject to 

an abrupt increase when there is an anomaly and then 

recovers a stable value once the prediction is stabilised, 

regardless if this is done with the transition matrix T or TCred. 

Consequently, an anomaly is characterised by an increase 

in conflict during a short lapse of time, in other words a 

conflict peak. To automatically detect a conflict peak, we 

use a new system of symbolic fusion between experts. This 

system is in charge of signal peak detection and is formed by 

three experts (Ei, i=1,..3) that render an opinion on the 

conflict which issues from the prediction and observation 

fusion. The FoD of the three experts is: Θbehaviour = {Ok, 

NotOk}. The hypothesis “Ok” means “the behaviour of the 

sensor is normal” and the hypothesis “NotOk” means “the 

behaviour of the sensor is abnormal”.  

The three experts provide an opinion, i.e. mexpert_i(i=1,2,3) 

on a particular characteristic of conflict signal mfusion(∅). 

The first expert refers to the sign of the derivative of the 

conflict signal in order to detect a rising peak. The second 

expert refers to the amplitude of the peaks and the third 

refers to the duration of the peaks. The three experts 

together detect the rise of high peaks that have a short 

duration. The fusion of the three experts (Dempster’s rule of 

combination) allows the identification of the conflict peaks 

that correspond to an impossible transition of states, and 

thus the sensor functioning: 

mfonct = mexpert1 ∩ mexpert2 ∩ mexpert3                           (5) 

mfonct furnishes a mass function for each of the conflict 

signal points and indicates whether these points correspond 

to an anomaly or not. Therefore, the opinions provided by 

the three experts are combined in turn (first we combine 

expert 1 with expert 2 and the resulting BBA with expert 3) 

using the Dempster rule of combination: 
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In the same way: mfonct = mexpert12 ∩ mexpert3. When conflict 

appears, this is due to a disaccord between the experts which 

are then normalised. However, if at least one expert’s 

opinion does not indicate that the situation is abnormal, then 

we consider that to all intent and purposes the situation is 

indeed not abnormal and hence it is considered as normal. 

The pignistic decision on the mass set mFonct makes it 

possible to detect a behavioural anomaly. A behavioural 

problem is settled when PFonct (NotOk) > PFonct (Ok). 

V. EXPERIMENTAL RESULTS 

In this paper, data are simulated, and therefore the 

Markovian transition matrix setting is empirical. 

Concerning, the evidential one, we are now working on 

“learning methods” to set the evidential transition matrix 

automatically.  

Thus in this paper both settings are empirical. We have 

defined Tcred from the Matrix T (§IV-B) as: 

TCred = 
 X0 X1 X2 X0∪∪∪∪X1 X0∪∪∪∪X2 X1∪∪∪∪X2 Θ 
X0 1/3 1/3 0 1/3 0 0 0 

X1 0 0 0 0 0 0 1 

X2 0 1/3 1/3 0 0 1/3 0 

X0∪∪∪∪X1 1/3 1/3 0 1/3 0 0 0 

X0∪∪∪∪X2 0 0 0 0 0 0 0 

X1∪∪∪∪X2 0 1/3 1/3 0 0 1/3 0 

Θ 1/7 1/7 1/7 1/7 1/7 1/7 1/7 

This simulation consists in using a symbolic expert at the 

input of the system, providing a mass function mobservation on 

the discernment frame Θ = {X0, X1, X2}.  

The probabilistic transition matrix has been defined in 

section IV-B. It prohibits the passage of state X0 to X2 and 

vice versa.  

The temporal evolution of the states consists of seven 

phases (Graph 1 of Figure 2).  

Figure 2 shows the apparition of two abnormal phases. At 

t=36 the sensor passes from state X0 to X2, which is 

theoretically impossible according to the transition matrix T. 

At t=48, the sensor passes from state X2 to X0, which is also 

theoretically impossible.  

The temporal evolution of the mass function mobservation is 

presented in Figure 2 (line & +). 

Figure 2 also shows the evolution of the probabilistic 

Markovian prediction (in brown, dash-dot line), i.e. only the 

Singletons hypotheses.  

 



 

 
Figure 2: Probabilistic case. The temporal evolution of the 

mass functions mobservation and mprediction. 

 

At t=36, the Markovian prediction, based the transition 

matrix T, shows with a firm belief that the state will be X0 

(mprediction(X0)=0.46) or X1 (mprediction(X1)=0.46) but 

certainly not X2 (mprediction(X2)=0.08). The observation 

shows with a firm belief that the state is X2 

(mobservation(X2)=0.50). There is thus a conflict between the 

prediction and observation at this time.  

Similarly, at t=48, the Markovian prediction shows with a 

firm belief, that the state will be X2 (mprediction(X2)=0.45), or 

X1 (mprediction(X1)=0.45) but certainly not X0 

(mprediction(X0)=0.10). The observation proves with a firm 

belief that the state is X0 (mobservation(X0)=0.40). This shows 

that there is again a conflict between prediction and 

observation at this level. 

 

Figure 3 shows the evolution of the evidential Markovian 

prediction (in brown, dash-dot line).As expected, predictions 

on the disjunctions of the hypotheses appear, which indicates 

a possible transitory state between two established states. 

The masses on the disjunctions weaken the ones on the 

singletons, and consequently the residual conflict diminishes 

(Figures 4 & 5). This diminution of conflict is a result of an 

improved mass repartition during the prediction. In fact, this 

prediction is more precise and therefore the difference 

between observation and prediction is less. This means that 

when there is no anomaly; the conflict between observation 

and prediction is vastly reduced. We also note a rise of the 

total ignorance when we observe the state X1. In fact, when 

the sensor is in state X1, all the potential transitions are 

possible (by definition), and this means that we can not 

ascertain a particular hypotheses.  

 
Figure 3: Evidential case. The temporal evolution of the 

mass functions mobservation and mprediction. 

 

To observe the impact of the two conflicts, we focus on 

the mass function mfusion resulting from the fusion of 

mobservation and mprediction as depicted in figure 4. 

 

 
Figure 4: Conflict (∅) between prediction & obs° in 

framework of a probabilistic Markovian Chain (cf IV-B). 

 

Two conflict peaks can be observed at t=36 and t=48, 

consistent with the abnormal functioning of the sensor. 

These conflict peaks are characterised by a strong positive 

amplitude of a short duration. However, it is difficult to 

analyse this signal automatically for two reasons: the first 

being that the average conflict is important (0.44) during the 

complete duration of the signal and the second being that the 

signal has no stable phase characterising a normal 

functioning of the sensor. 

Figure 5 represents the results of the application of the 

evidential version of the Markov Chain (§IV-C). The results 

are practically identical to those presented in Figure 4 (two 

important conflict peaks at t=36 and t=48), but the conflict 

peaks for behavioural anomalies are of such a height that 

they are easier to distinguish and this facilitates automatic 

detection. The average conflict shifts from 0.44 to 0.16 and 

is stable during the normal performance of the sensor.  



 

 
Figure 5: Conflict (∅) between prediction & observation in the 

evidential framework of a Markov chain (cf §IV-C). 

 

Figure 6 presents a comparison of the two methods that 

we use, §IV-B and §IV-C. Graphs 1 and 3 represent the 

conflict signals which issue from the observation / prediction 

fusion relatively to methods §IV-B (probabilistic version) 

and §IV-C (evidential version) (see figure 5 & 6 for more 

details). Graphs 2 and 4 represent the pignistic probability 

on the hypothesis “NotOk”. The final decision on abnormal 

behaviour is made when Pfonct(NotOk)>PFonct(Ok). In this 

case we can state that the sensor is not functioning correctly. 

 

 
Figure 6: Conflict signals (from fusion pred. /obs.) of both 

methods: graph 1 - the probabilistic method and graph 3 - 

Evidential Markov Chains. Graphs 2 & 4 are pignistic 

decisions (peak detection), with a false alarm in graph 2. 

 

In the case of a probabilistic Markov Chain, we observe a 

false detection (time=44) that is not apparent in the 

evidential case. Several experimental results demonstrate 

that the evidential approach presents fewer discordant cases 

as the conflict signal is more stable during the periods of 

normal behaviour. In fact, as the prediction is less specific, 

the observation and prediction differ far less (60% less on 

average). During periods of abnormal behaviour, the conflict 

undergoes an important increase and is easily detected by 

the three experts 

VI. CONCLUSION 

In this article, we developed a method to detect abnormal 

behaviour in a sensor within the TBM framework. Our 

method compares an observed state and a predicted state. 

The predicted state is based on the behavioural model of the 

sensor previously defined. Two mass functions (mprediction 

and mobservation) are obtained and merged. The conflict 

between the observed and predicted mass functions is 

analysed using three experts. In order to estimate the mass 

function, two approaches are proposed and compared. The 

first one uses a probabilistic behavioural model with the help 

of a Markov Chain. It has the inconvenience that it loses the 

advantages linked to belief functions because it passes 

through a process where mass function is converted to 

probabilities. The second approach resolves this problem 

and proposes a technique based on belief functions. We have 

empirically defined an evidential Markov Chain transition 

matrix, more adapted in an evidential fusion design. With 

this second approach we can obtain a more precise 

prediction of the expected behaviour. It facilitates the 

creation of the predicted mass function and the identification 

of the behavioural anomalies. In fact, as the prediction is 

closer to the observation, the conflict resulting from their 

fusion accurately characterises the correct functioning. If the 

prediction diverges from the observation, the conflict 

evolves in relation to this divergence and indicates abnormal 

behaviour that can be robustly identified by the three 

experts. To conclude, we are now working to automatically 

estimate the evidential transition matrix. 
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