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Abstract-In theories of evidence, several methods have been
proposed to combine a group of basic belief assignments al-
together at a given time. However, in some applications in
defense or in robotics the evidences from different sources are
acquired only sequentially and must be processed in real-time
and the combination result needs to be updated the most recent
information. An approach for combining sequentially unreliable
sources of evidence is presented in this paper. The sources of
evidence are not considered as equi-reliable in the combination
process, and no prior knowledge on their reliability is required.
The reliability of each source is evaluated on the fly by a distance
measure, which characterizes the variation between one source
of evidence with respect to the others. If the source is considered
as unreliable, then its evidence is discounted before entering in
the fusion process. Dempster’s rule of combination and its main
alternatives including Yager’s rule, Dubois and Prade rule, and
PCR5 are adapted to work under different conditions. In this
paper, we propose to select the most adapted combination rule
according to the value of conflicting belief before combining the
evidence. The last part of this paper is devoted to a numerical
example to illustrate the interest of this approach.
Keywords: evidence theory, combination rule, evidence
distance, conflicting belief.

I. INTRODUCTION

Evidence theories1 are widely applied in the field of infor-
mation fusion. A particular attention has been focused on how
to efficiently combine sources of evidence altogether at the
same time (static approach), and many rules aside Dempster’s
rule have been proposed [1], [2], [6], [9]. In many applications
however, the evidences from different sources are acquired
sequentially by different sensors or human experts and the
belief updating and decision-making need to be taken in real-
time which requires a sequential/dynamic approach rather than
a static approach of the fusion problem.

Usually the evidences arising from different independent
sources are often considered equally reliable in the combina-
tion process, when the prior knowledge about the reliability
of each source is unknown. However, all the sources of
evidence to be combined can have different reliabilities in real

applications. If the sources of evidence are considered as equi-
reliable, the unreliable ones may bring a very bad influence
on combination result, and even leads to inconsistent results
and wrong decisions. Thus, the reliability of each source must
be taken account in the fusion process as best as possible
to provide a useful and unbiased result. In this work, we
propose to evaluate on the fly the relability of the sources to
combine based on an evidential distance/reliability measure.
From this reliability measure, one can discount accordingly
the unreliable sources before applying a rule of combination
of basic belief assignments (bba’s).

Many rules, like Dempster’s rule [7] and its alternatives can
be used to combine sources of evidences expressed by bba’s
and they all have their drawbacks and advantages (see [8],
Vol. 1, for a detailed presentation). Dempster’s rule, is usually
considered well adapted for combining the evidences in low
conflict situations and it requires acceptable complexity when
the dimension of the frame of discernment is not too large.
Dempster’s rule however provides counter-intuitive behaviors
when the sources evidences become highly conflicting. To
palliate this drawback, several interesting alternatives have
been proposed when Dempster’s rule doesn’t work well,
mainly: Yager’s rule [9], Dubois and Prade rule (DP rule)
[2], and PCR5 (proportional conflict redistribution rule no 5)
[8] developed in DSmT framework. The difference among
Dempster’s rule and its main alternatives mainly lies in the
distribution of the conflicting belief m⊕(∅) which is generally
used to characterize the total amount of conflict [4] between
sources. In this paper, we propose to select the proper rule
of combination based on the value of the total degree of
conflict m⊕(∅). The last part of this paper presents a numerical
example to show how the approach of sequential adaptive
combination of unreliable sources of evidence works.

II. PRELIMINARIES

A. Basics of Dempster-Shafer theory (DST)

DST [7] is developed in Shafer’s model. In this model,
a fixed set Θ = {θ1, θ2, . . . , θn} is called the frame of
discernment of fusion problem. All the elements in Θ are
mutually exclusive and exhaustive. The set of all subsets of

1DST (Dempster-Shafer Theory) [7] or DSmT (Dezert-Smarandache Theory) [8].



Θ is called the power set of Θ, and it is denoted 2Θ. For
instance, if Θ = {θ1, θ2, θ3}, then 2Θ = {∅, θ1, θ2, θ3, θ1 ∪
θ2, θ1 ∪ θ3, θ2 ∪ θ3, θ1 ∪ θ2 ∪ θ3}. A basic belief assignment
(bba), also called mass of belief, is a mapping m : 2Θ → [0, 1]
associated to a given body of evidence B such that m(∅) = 0
and

∑
A∈2Θ m(A) = 1. The credibility (also called belief)

of A ⊆ Θ is defined by Bel(A) =
∑

B∈2Θ

B⊆A

m(B). The

commonality function q(.) and the plausibility function Pl(.)
are also defined by Shafer in [7]. The functions m(.), Bel(.),
q(.) and Pl(.) are in one-to-one correspondence.

Let m1(.) and m2(.) be two bba’s provided by two in-
dependent bodies of evidence B1 and B2 over the frame of
discernment Θ. The fusion/combination of m1(.) with m2(.),
denoted m(.) = [m1 ⊕ m2](.) is obtained in DST with
Dempster’s rule of combination as follows:





m(∅) = 0

m(A) =

∑
X1∩X2=A

m1(X1)m2(X2)

∑
X1∩X2 6=∅

m1(X1)m2(X2)
∀A 6= ∅, A ∈ 2Θ (1)

The degree of conflict between the bodies of evidence B1

and B2 is defined by

m⊕(∅) =
∑

X1,X2∈2Θ

X1∩X2=∅

m1(X1)m2(X2) (2)

Dempster’s rule can be directly extended to the combination
of S independent and equally reliable sources. It is a commu-
tative and associative rule of combination and it preserves the
neutral impact of the vacuous belief assignment defined by
mvba(Θ) = 1.

B. Main alternatives to Dempster’s rule

Dempster’s rule yields counterintuitive results when the
evidences highly conflict because of its way of assigning the
mass of conflicting belief m⊕(∅). Thus, a lot of alternatives
to Dempster’s rule have been proposed for overcoming limita-
tions of Dempster’s rule. The main alternative rules including
Yager’s rule [9], DP rule [2] and PCR5 [8] are briefly recalled.

• Yager’s rule: Yager admits the conflicting belief is not
reliable. So m⊕(∅) is transferred to the total ignorance
in Yager’s rule. It is given by m(∅) = 0 and for A 6= ∅,
A ∈ 2Θ by




m(A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y ), for A 6= Θ

m(Θ) = m1(Θ)m2(Θ) +
∑

X,Y ∈2Θ

X∩Y =∅
m1(X)m2(Y )

(3)
• Dubois & Prade rule: This rule assumes that if two

sources of evidence are in conflict, one of them is right
but we don’t know which one. Thus, if X ∩ Y = ∅, then
the mass committed to the set X ∩ Y by the conjunctive
operator should be transferred to X ∪ Y . According to

this principle, DP rule is defined by m(∅) = 0 and for
A 6= ∅ and A ∈ 2Θ by

m(A) =
∑

X,Y ∈2Θ

X∩Y =A

m1(X)m2(Y )

+
∑

X,Y ∈2Θ

X∩Y =∅
X∪Y =A

m1(X)m2(Y ) (4)

• PCR5 rule: PCR5 transfers the partial conflicting mass
to the elements involved in the conflict, and it is consid-
ered as the most mathematically exact redistribution of
conflicting mass to nonempty sets following the logic of
the conjunctive rule. PCR5 is defined by m(∅) = 0 and
∀A 6= ∅, A ∈ 2Θ by

m(A) =
∑

X1,X2∈2Θ

X1∩X2=A

m1(X1)m2(X2)+

∑

X2∈2Θ

X2∩A=∅

[
m1(A)2m2(X2)

m1(A) + m2(X2)
+

m2(A)2m1(X2)
m2(A) + m1(X2)

] (5)

The details, examples and the extension of PCR5 formula
(5) for S > 2 sources are given in [8].

C. Discounting source of evidence

When the sources of evidences are not considered equally
reliable, it is reasonable to discount each unreliable source si,
i = 1, 2, . . . , S by a reliability factor αi ∈ [0, 1]. Following
the classical discounting method [7], a new discounted bba
m′(.) is obtained from the initial bba m(.) provided by the
unreliable source si as follows




m′(A) = αi ·m(A), A 6= Θ
m′(Θ) = 1−∑

A∈2Θ

A 6=Θ

m′(A) (6)

αi = 1 means that the total confidence in the source si, and the
original bba doesn’t need to be discounted. αi = 0 means that
the source is si is totally unreliable and its bba is revised as a
vacouous bba m′(Θ) = 1, which will have a neutral impact in
the fusion process. In practice, the discounting method can be
used efficiently if one has a good estimation of the reliability
factor of each source. We show in the next section how one
can evaluate the relability of a source.

III. EVALUATING THE RELIABILITY OF EACH SOURCE

Without prior knowledge on the reliability of the sources
of evidence, we propose to evaluate the reliability factors of
each source based on the distance between the bba from a
given source si with respect to the others. If the bba of the
given source, say si varies too much with respect to the others,
this source of evidence is considered not reliable and it will
be discounted before to be combined. We will show further
how the discounting/reliability factor can be estimated. We
implicitly assume here that the following principle ”Truth is
reflected by the majority of opinions” holds.



In [3], Jousselme et al. have proposed the following distance
measure dJ(m1,m2) between two bba’s2 m1 , m1(.) and
m2 , m2(.) defined on the same power set 2Θ:

dJ(m1,m2) =

√
1
2
(m1 −m2)T D(m1 −m2) (7)

where D is a 2|Θ| × 2|Θ| positive matrix whose elements are
defined as Dij , |Ai∩Bj |

|Ai∪Bj | where Ai and Bj are elements of
the power set 2Θ. dJ(m1,m2) ∈ [0, 1] is a distance which
measures the similarity between m1 and m2 considering both
the values and the relative specificity of focal elements of each
bba.

The total degree of conflict m⊕(∅) obtained from all focal
elements which are incompatible doesn’t actually capture the
similarity between bba’s as shown by Martin et al. in [5].

If N pieces of evidence m1, m2, . . . , mN are combined
sequentially, two approaches similarly with [5] could be used
to measure the variation between mj and the others. One
considers the average value dJ between mj and the others
which is given by

dj−1
1 (mj) =

1
j − 1

j−1∑

i=1

dJ(mj ,mj−i) (8)

The other one is simply defined as

dj−1
2 (mj) = dJ(mj ,m

j−1
1 ) (9)

where mj−1
1 , mj−1

1 (.) is obtained by the sequential
combinination of the bba’s m1(.), m2(.),. . . , mj−1(.), i.e.
mj−1

1 (.) = (((m1 ⊕m2)⊕m3) · · · ⊕mj−1)(.) with a fusion
rule such as Dempster’s rule, Yager’s rule, DP rule, PCR5, etc.
The second measure, dj−1

2 (mj), reflects only the difference
between mj and the combined bba mj−1

1 and thus cannot
precisely measure the similarity between mj and the other
individual evidences m1(.), m2(.), . . . , mj−1(.) because some
information on specificities of these individual bba’s has been
lost forever through the fusion process. The following exam-
ples will show the distinction between these two methods.
Example 1: Let’s consider the frame of discernment Θ =
{A,B, C}, Shafer’s model and the same following bba’s

m1(.) : m1(A) = 0.5,m1(B) = 0.2
m1(A ∪B) = m1(C) = m1(Θ) = 0.1

m2(.) : m2(A) = 0.5,m2(B) = 0.2
m2(A ∪B) = m2(C) = m2(Θ) = 0.1

...
mj(.) : mj(A) = 0.5,mj(B) = 0.2

mj(A ∪B) = mj(C) = mj(Θ) = 0.1

The difference between mj(.), for j ≥ 2, and all the bba’s
mi(.), for i < j according to formula (8) gives dj−1

1 (mj) = 0,
which shows correctly that mj(.) is identical to the other bba’s

mi(.), for i < j. If one uses the measure dj−1
2 (mj) defined

in (9), one gets the results plotted in Fig. 1.
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Fig. 1: Variation of the similarity measure dj−1
2 (mj) based on

different fusion rules.

One sees that there exists a variation of the similarity
measure using all different fusion rules with a trend to certain
values when j increases. This is a bad behavior since we know
that mj equals to the others bba’s and we would expect to get
dj−1
2 (mj) = 0 which unfortunately is not the case. That is the

main reason why we abondon the use of dj−1
2 (mj) measure

in the sequel of this work.
Example 2: Let’s consider the frame of discernment Θ =
{A,B, C, D, E}, Shafer’s model, and the following bba’s

m1(.) : m1(A) = 0.6,m1(B) = m1(C) = 0.1
m1(D) = m1(E) = 0.1

m2(.) : m2(Θ) = 1
m3(.) : m3(Θ) = 1

...
mj−1(.) : mj−1(Θ) = 1

mj(.) : mj(A) = 0.6,mj(B) = mj(C) = 1,

mj(D) = mj(E) = 0.1

In this example, mj(.) = m1(.), but mj(.) is quite different
from the others bba’s mi(.), i 6= 1. The similarity measure
dj−1
1 (mj) between mj(.), for j ≥ 3 and the bba’s mi(.),

i < j is dj−1
1 (mj) = 0.2(j−2)

j−1 which shows a trend to 0.2
when j increases. However in such case, one always gets
using Dempster’s rule, Yager’s rule, DP rule or PCR5 rule
dj−1
2 (mj) = 0. From such very simple example, one sees that

one cannot detect the dissimilarity of mj(.) with a majority
of quite distinct bba’s when dj−1

2 (mj) measure is used. This
shows again that dj−1

2 (mj) is actually not very appropriate
for measuring the similarity between a given bba mj(.) and a
set of bba’s. Therefore we will only consider the measure of
similarity dj−1

1 (mj) in the sequel.

2Here for notation convenience, we use the usual vectorial notation m1 and m2 (with boldfaced letter) for representing the entire bba’s usually denoted
m1(.) and m2(.). m1 and m2 are vectors of dimension 2|Θ| × 1. We assume that the bba’s vectors are both ordered using the same order for their
components.



For managing the computational burden in applications, a
parameter n ≤ j − 1 is introduced in the measure dj−1

1 (mj)
and we define the new measure:

dj−1
n (mj) =

1
min(n, j − 1)

min(n,j−1)∑

i=1

dJ(mj ,mj−i) (10)

The accuracy and the computational complexity of this
similarity measure increases when n tends to j − 1.

Let ’s consider a given discounting tolerance threshold ωd

in [0, 1]. If dj−1
n (mj) ≥ ωd, it indicates that the bba mj(.)

will be considered as not similar enough with respect to other
bba’s and therefore the source sj is considered as unreliable
and must be discounted before entering in the fusion process.
The unreliability of the source sj may be caused by a fault
of the sensor or unexpected noises, condition changes, etc. In
such case, the bba mj(.) needs to be discounted by formula
(6). As proposed by Martin et al. in [5], the reliability factor of

the source sj is chosen as αj = (1− dj−1
n (mj)

λ)
1/λ

where
the parameter λ is defined in the easiest way with λ = 1.
The larger dissimilarity leads to the less reliability factor.
If dj−1

n (mj) < wd, it means that the dissimilarity between
mj(.) with other bba’s is acceptable, and there is no need to
revise/discount mj(.) in such case.

IV. SELECTION OF COMBINATION RULES

After evaluating the reliability of the sources, we have to
select a suitable combination rule. Dempster’s rule is known to
offer pretty good performances when the combined bba’s are
not in too high conflict, otherwise when the conflict becomes
too large it is generally considered safer to use alternative
rules like Yager’s rule, DP rule, and PCR5 rule. The following
examples show the difference between the different approaches
for the fusion of sources of evidences.
Example 3: This is Zadeh’s example [10]. Let’s consider
Θ = {A,B, C} with Shafer’s model and the following bba’s

m1(.) : m1(A) = 0.9,m1(B) = 0.1
m2(.) : m2(B) = 0.1,m2(C) = 0.9

One sees that the two sources are in very high conflict
because the total conflict is m1,2

⊕ (∅) = 0.99. Using Dempster’s
rule, one gets surprisingly m(B) = 1 which is somehow
conterintuitive since m1 and m2 both believe in B with a
little chance, but the fusion result states that B is the only
possible solution with certainty, which seems unreasonable3.
If we use Yager’s rule, DP rule, and PCR5, one gets:
• Yager’s rule: m(B) = 0.01, m(Θ) = 0.99
• DP rule: m(B) = 0.01, m(A ∪B) = 0.09,

m(A ∪ C) = 0.81, m(B ∪ C) = 0.09
• PCR5: m(A) = 0.486, m(B) = 0.028, m(C) = 0.4860
These results are more reasonable in some sense, but they

are not the same. Yager’s rule transfers all the conflicting mass
to total ignorance and produces the least specific result in the

three rules. DP rule distributes the conflicting mass to the
union of the involved sets, which makes the uncertainty of the
result still very large. DP rule produces a less specific result
than PCR5 but DP is a bit more specific than Yager’s rule.
PCR5 provides the most specific result since A and C share
the same bba whereas B keeps a very low belief assignment.

Therefore, in order to avoid to get counterintuitive results,
it is reasonable to use Yager’s rule, DP rule, or PCR5 than
Dempster’s rule as soon as the level of conflict becomes large.
The choice among Yager’s rule, DP rule, and PCR5 depends
on the application and the computational resource one has.
PCR5 is very appropriate if a decision has to be made because
it provides the most specific solution, but PCR5 requires the
most computational burden. Sometimes it better to get less
specific result if we don’t need to take a clear/precise decision
in case of high conflict between sources. In such case, Yager’s
rule and/or DP rule can be used instead. When the level of
conflict between two bba’s is low Dempster’s rule can be
used since it offers a good compromise between computational
complexity and the specificity of the result.
Example 4: Let’s consider Θ = {A,B, C} and

m1(.) : m1(A) = 0.35,m1(B) = 0.3,m1(A ∪B) = 0.15,

m1(C) = 0.2
m2(.) : m2(A) = 0.35,m2(B) = 0.3,m2(A ∪ C) = 0.05,

m2(A ∪B) = m2(C) = m2(Θ) = 0.1
m3(.) : m3(A) = 0.3,m3(B) = 0.3,m3(A ∪B) = 0.2,

m3(C) = m3(A ∪ C) = 0.1

The conflicts between each pair of bba’s are given by
m1,2
⊕ (∅) = 0.455,m1,3

⊕ (∅) = 0.395,m2,3
⊕ (∅) = 0.395. The

levels of these conflicts are not too large according and the
sequential combination m(.) = [[m1⊕m2]⊕m3](.) using the
different rules yields
• Dempster’s rule: m(A) = 0.5868, m(B) = 0.3592,

m(A ∪B) = 0.0202, m(C) = 0.0338
• Yager’s rule: m(A) = 0.3105, m(B) = 0.243, m(C) =

0.0555, m(A ∪ B) = 0.097, m(A ∪ C) = 0.0455,
m(Θ) = 0.2485

• DP rule: m(A) = 0.3255, m(B) = 0.2295, m(C) =
0.0435, m(A ∪ B) = 0.1975, m(A ∪ C) = 0.0575,
m(B ∪ C) = 0.0345, m(Θ) = 0.112

• PCR5: m(A) = 0.4889, m(B) = 0.3941, m(C) =
0.0819, m(A ∪B) = 0.0268, m(A ∪ C) = 0.0083

All the rules provide reasonable results with assigning the
largest belief to A, but Dempster’s rule produces the most
specific result with a less computational effort. Dempster’s
rule is thus well appropriate when m⊕(∅) is not too large.

V. ADAPTIVE COMBINATION OF SEQUENTIAL EVIDENCE

Here we are concerned with the real-time decision-making
problem from the sequential acquisition of bba’s m1(.),
m2(.),. . . , mN (.) defined on a same frame Θ without any

3More generally, one can show that Dempster’s rule can become insensitive to the variation of input bba’s to combine - see [8], Vol. 1, Chap. 5, p. 114 for
example.



prior knowledge about reliability of each source. We start
with m1(.). When m2(.) is available, one combines it with
m1(.) by a suitable rule according to the value of m1,2

⊕ (∅)
without evaluating the reliability of the two sources. When
mj(.), for j ≥ 3 becomes available at the time j, the reliability
of the source sj is evaluated and mj(.) is discounted (if
necessary) by the approach presented in section III. Before
combining the discounted bba m′

j(.) (or mj(.) when no
discounting occurs) with the last updated bba mj−1

1 (.), the
combination rule is selected according to the value of the
conflict between mj(.) and mj−1

1 (.). We use a threshold
ω∅. If m⊕(∅) < ω∅, Dempster’s rule is selected because it
offers a good compromise between complexity and specificity.
Otherwise, Yager’s rule, DP rule, or PCR5, are selected upon
the actual application to avoid to get counterintuitive results.

The tuning of thresholds ωd and ω∅ is not easy in general.
If the thresholds are too large, one takes the risk to get
counterintuitive results, whereas if they are set to too low
values the non specificity of the result will become large
and even will lead to decision-making under big uncertainty.
Therefore, both thresholds ωd and ω∅ need to be determined by
accumulated experience depending on the actual application .

VI. NUMERICAL EXAMPLE

Let us suppose a multisensor-based target identification
system. From five independent sensors, the system collects five
pieces of evidence sequentially (actually we consider here 2
possible bba’s m5A(.) and m5B(.) for the fifth source). For
decision-making in real-time, the combination result needs to
be updated right after the new evidence arrives. The bba’s
defined on the power set of Θ = {A,B, C} are as follows

m1(.) : m1(A) = 0.8,m1(B) = 0.1,m1(Θ) = 0.1
m2(.) : m2(A) = 0.4,m2(B) = 0.25,

m2(C) = 0.2,m2(B ∪ C) = 0.15,

m3(.) : m3(B) = 0.9,m3(C) = 0.1,

m4(.) : m4(B) = 0.45,m4(C) = 0.45,m4(B ∪ C) = 0.1,

m5A(.) : m5A(A) = 0.5,m5A(A ∪B) = 0.25,

m5A(C) = 0.1,m5A(A ∪ C) = 0.15,

m5B(.) : m5B(B) = 0.5,m5B(A ∪B) = 0.25,

m5B(C) = 0.1,m5B(B ∪ C) = 0.15.

The five pieces of evidence are combined sequentially, and
the results are presented in Table 1. The chosen thresholds are
ωd = 0.6, ω∅ = 0.6 and n = 5.

All the rules provide reasonable results when combining
consistent bba’s m1(.) and m2(.). The bba m3(.) is highly
conflicting with m1(.) and m2(.). If there is no prior in-
formation about the reliability of the sources, we evaluate
the reliability of each source according to its variation with
respect to the others. The average similarity distance between
m3 and m1, m2 is so large that dj−1

n (m3) > ωd. Thus,
m3(.) is considered unreliable. If we combine directly (without
discounting) m3(.) with m2

1(.) using Dempster, Yager, DP
or PCR5, one gets a high belief in B with all the rules.

With the adaptive rule, the bba of m3(.) is discounted with
the reliability factor α = 1 − dj−1

n (m3) to get m′
3(.). The

combination of m′
3(.) with m2

1(.) assigns now the highest
belief in A. This adaptive method is helpful to deal with
the high conflicts caused by the unreliability of the sources.
The difference between m4(.) and m1(.), m2(.), m3(.) is
below the tolerance threshold, but the value of m⊕(∅) between
m4(.) and m3

1(.) is very large, and m⊕(∅) = 0.8334 > ω∅.
The result of Dempster’s rule indicates that the most credible
hypothesis is B, whereas A is not possible to happen, which
is not reasonable. The results produced by Yager’s rule and
DP rule selected in adaptive rule is full of uncertainty, and we
even can’t make a clear decision from them because of their
ways of distributing the mass of conflicting belief. We can get
the specific output that most belief focuses on hypothesis A
only if PCR5 is selected in the adaptive rule. As we can see,
m1(.) and m2(.) strongly support the hypothesis A, whereas
m3(.) and m4(.) strongly support B. It is not easy to be
sure what is the true hypothesis. The adaptive rule tends to
preserve the earlier decision, since it assumes that m1(.) and
m2(.) where totally reliable, and then m3(.) is considered
unreliable and thus discounted. When m5(.) is available, if
m5(.) strongly supports A as with m5A(.), the combination
results of all the adaptive rules commit their highest belief
in A. If m5(.) strongly supports B as with m5B(.), the
combination results will change and assign the highest belief
in B. The results produced by the adaptive rule with selecting
combination rules between Dempster and PCR5 are always
most specific, which is very useful and helpful for decision-
making in real-time. The good performance of adaptive rules
lies in the method of evaluating the reliability of sources and
the way for automatically selecting suitable combination rules.

VII. CONCLUSIONS

An approach for adaptive combination of unreliable sources
of evidence has been proposed in this paper for combining
sequentially the sources without prior knowledge on their
reliabilities. The reliability of each source is evaluated ac-
cording to its similarity with respect to the others which
is measured by an average distance of similarity. When a
source is not reliable enough, its bba is discounted to diminish
its influence in the fusion process and on decision-making.
Before the fusion of the sources, the suitable combination
rule is selected depending on the mass of conflicting belief
m⊕(∅) and the compromise between the computational burden
and the specificity of the result one wants to deal with.
Whenever m⊕(∅) is below the tolerance threshold, Dempster’s
rule can be chosen as a good rule of combination for such a
compromise. Otherwise, Yager’s rule, DP rule, or PCR5 must
be selected to avoid to get counterintuitive results. The choice
among these three rules depends on the application and the
acceptable risk in decision-making errors. PCR5 rule is very
appropriate to use in general for decision-making because
it provides the most specific fusion results, but it requires
more computational resources than other rules. If we want
to keep uncertain results and don’t necessarily need a very



specific decision in case of high conflict between sources,
Yager’s rule or DP rule can be selected instead. Our numerical
example shows the interest of the proposed approach. The
main difficulty however lies in the tuning of the thresholds ωd,
ω∅ and the parameter n involved in its implementation. These
parameters must be selected by experience depending on the
application. This approach was based on Shafer’s model, but
could be extended to other models proposed in DSmT.
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TABLE I
COMBINATION RESULTS BY DIFFERENT RULES

m2
1 m3

1 m4
1 m5A

1 m5B
1

Dempster’s rule

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(B) = 0.9536
m(C) = 0.0464

m(B) = 0.9536
m(C) = 0.0464

m(B) = 0.9536
m(C) = 0.0464

m(B) = 0.9867
m(C) = 0.0133

Yager’s rule

m(A) = 0.36
m(B) = 0.065
m(C) = 0.02
m(B ∪ C) = 0.015
m(Θ) = 0.54

m(B) = 0.558
m(C) = 0.0575
m(Θ) = 0.3845

m(B) = 0.4799
m(C) = 0.2046
m(B ∪ C) = 0.0385
m(Θ) = 0.2770

m(A) = 0.1385
m(B) = 0.1296
m(A ∪B) = 0.0692
m(C) = 0.0885
m(A ∪ C) = 0.0415
m(Θ) = 0.5327

m(B) = 0.5993
m(A ∪B) = 0.0692
m(C) = 0.0827
m(B ∪ C) = 0.0473
m(Θ) = 0.2015

DP rule

m(A) = 0.36
m(B) = 0.065
m(A ∪B) = 0.24
m(C) = 0.02
m(A ∪ C) = 0.16
m(B ∪ C) = 0.035
m(Θ) = 0.12

m(B) = 0.414
m(A ∪B) = 0.324
m(C) = 0.0335
m(A ∪ C) = 0.036
m(B ∪ C) = 0.0245
m(Θ) = 0.168

m(B) = 0.4925
m(C) = 0.1249
m(B ∪ C) = 0.2206
m(Θ) = 0.1620

m(A) = 0.081
m(B) = 0.1783
m(A ∪B) = 0.2868
m(C) = 0.1026
m(A ∪ C) = 0.0867
m(B ∪ C) = 0.0493
m(Θ) = 0.2153

m(B) = 0.6897
m(A ∪B) = 0.0405
m(C) = 0.0695
m(B ∪ C) = 0.1691
m(Θ) = 0.0312

PCR5 rule

m(A) = 0.7734
m(B) = 0.1273
m(C) = 0.0653
m(B ∪ C) = 0.0340

m(A) = 0.3902
m(B) = 0.5814
m(C) = 0.0284

m(A) = 0.1942
m(B) = 0.5733
m(C) = 0.2245
m(B ∪ C) = 0.008

m(A) = 0.4025
m(B) = 0.4154
m(A ∪B) = 0.0296
m(C) = 0.1346
m(A ∪ C) = 0.0178
m(B ∪ C) = 0.0001

m(A) = 0.1049
m(B) = 0.7182
m(A ∪B) = 0.0296
m(C) = 0.1334
m(B ∪ C) = 0.0139

dj−1
n (mj)(n = 5) 0.3813 0.6601 0.4994 0.4115 0.4137

Dempster′s rule
with discounting

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(B) = 0.7565
m(C) = 0.2255
m(B ∪ C) = 0.018

m(B) = 0.7608
m(C) = 0.2392

m(B) = 0.9194
m(C) = 0.0770
m(B ∪ C) = 0.0036

Adaptive rule
(Dempster&Yager)

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(B) = 0.1261
m(C) = 0.0376
m(B ∪ C) = 0.0030
m(Θ) = 0.8334

m(A) = 0.4758
m(B) = 0.0368
m(A ∪B) = 0.2379
m(C) = 0.1067
m(A ∪ C) = 0.1427

m(B) = 0.5550
m(A ∪B) = 0.2172
m(C) = 0.0970
m(B ∪ C) = 0.1308

Adaptive rule
(Dempster&DP)

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(B) = 0.1261
m(A ∪B) = 0.3247
m(C) = 0.0376
m(A ∪ C) = 0.3247
m(B ∪ C) = 0.1147
m(Θ) = 0.0722

m(A) = 0.6232
m(B) = 0.0765
m(A ∪B) = 0.126
m(C) = 0.0988
m(A ∪ C) = 0.0755

m(A) = 0.1062
m(B) = 0.5844
m(A ∪B) = 0.1298
m(C) = 0.1429
m(B ∪ C) = 0.0367

Adaptive rule
(Dempster&PCR5)

m(A) = 0.7826
m(B) = 0.1413
m(C) = 0.0435
m(B ∪ C) = 0.0326

m(A) = 0.7216
m(B) = 0.2046
m(C) = 0.0437
m(B ∪ C) = 0.0301

m(A) = 0.4634
m(B) = 0.2975
m(C) = 0.2273
m(B ∪ C) = 0.0118

m(A) = 0.7526
m(B) = 0.1395
m(C) = 0.1079

m(A) = 0.2562
m(B) = 0.6116
m(C) = 0.1283
m(B ∪ C) = 0.0039


