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Abstract—We consider the problem of statistical parameter A generalization of the likelihood function will be propake
estimation when the data are uncertain and described by be#f and an extension of the EM algorithm, called the evidential
functions. An extension of the Expectation-Maximization EM) EM (E2M) algorithm, will be introduced for its maximization.

algorithm, called the Evidential EM (E2M) algorithm, is de- Wi te that. in th ial h h f
scribed and shown to maximize a generalized likelihood furton. € may note that, in the special case where each mass func-

This general procedure provides a simple mechanism for estiat- ~ tionsm; is consonant, the data can be equivalently represented
ing the parameters in statistical models when observed datare as n possibility distributionzy, ..., z,, which constitutes a

uncertain. Two simple application examples are demonstrad.  fuyzzy random sampl&he problem of statistical inference from
Keywords: Statistical inference, point estimation, EM al- fuzzy data, which has received a lot of attention in the past
gorithm, uncertain data. few years [6], [9], [11], [16], is thus a special case of the
problem considered here.

Early attempts to adapt the EM algorithm to evidential data,

In statistics, observations of random quantities are Wsual, e special case of mixture models with evidential class
assumed to be either precise or imprecise, i.e., set—valu%ms’ were presented in [10], [14], [15]. A rigorous silnt

The latter situation occurs, e.g., in the case of censorgfiis nroblem, which is a special case of the general method
data, where an observation is only known to belong to (Fesented in this paper, was introduced in [3]

set, usually an interval. The Expectation-MaximizatioME * tna rest of the paper is organized as follows. The EM
algorithm [5], [12] has proved to be a powerful mechanism fQ{jq,rithm will first be recalled in Section Il. The extension

performing maximum likelihood parameter estimation frog¢ e |ielinood function and the 1 algorithm will then be

such incomplete data. _introduced in Sections Ill and 1V, respectively. The apalion
There are situations, however, where the observations gf&is algorithm will then be illustrated through two stiital

not only imprecise, but alsancertain i.e., partially reliable .o ence problems based on evidential data: binomial grob

_[1]' Consider_, e.g., a classification problem in which Objecbility estimation (Section V) and univariate normal meam an
in a population belong to one and only one group. Bet .0 astimation (Section VI).
be the finite set of groups, andl be the group of an object

randomly drawn from the population. In some applications, 1. THE EM ALGORITHM

realizationsz of X are not k_nown with certainty. Rather, The EM algorithm is a broadly applicable mechanism for
an expert provides a subjective assessment ¢& process compyting MLEs from incomplete data, in situations where
known aslabeling [7], [8]). This assessment may take th_ estimation would be straightforward if complete data ever
form of a subsetd C X, a probability distributionp on X' 5yjlaple [5].

or, more generally, a mass function on ¥, i.e., a function  pormally, we assume the existence of two sample spaces
m 2% — [0,1]. It must be stressed that, in this exampley andy, and a many-to-one mapping from X to ) (see

the data generation process can be decomposed into Qe 1). The observed (incomplete) datare a realization

I. INTRODUCTION

components: from ), while the corresponding in X is not observed and
« a random component, which generates a realizationjs only known to lie in the set
from X;
; . N B
« a non random component, which produces a mass func- X(y)=¢ (y) ={x e X|p(x) =y}

tion m that models the expert's partial knowledgewof \ector x is referred to as theomplete datavector. It is
If this process is repeatedtimes independently, the data takeg, realization from a random vectd with p.d.f. ge(x; W),

the form of n mass functionsn, ..., m,, considered as a where® = (¥,,...,¥,)’ is a vector of unknown parameters
partial specification of an unknown realizatian, ..., z, of with parameter spac®. The observed data p.dg(y; ®) is
an i.i.d. random sampl&y, ..., X,,. We will refer to such related tog. (x; ¥) by

data asvidential datalf a parametric model is postulated for

X, how can the method of maximum likelihood be extended to g(y; ¥) = / ge(x; W)dx. (1)
handle such data? This is the problem considered in thisrpape X(y)



Figure 1. Complete and observed sample spaces.

The EM algorithm approaches the problem of maximizing
the obsgrved—dat_a IOQ |Ikellh0ddgL(\Il) - logg(y; ‘I’) t_)y Figure 2.  Uncertain relationship between the complete drskmved data
proceeding iteratively with the complete-data log likelild spaces.
log L.(¥) = logg.(x;¥). Each iteration of the algorithm
involves two steps called the expectation step (E-step) and

the maximization step (M-step). With the same notations as in the previous section, the
The E-step requires the calculation of observed data likelihood may now be defined as:
Q(T, ¥W) = Eg [log L.(¥)]y], L(W) = Zg |0k ©)P({6:}) )

where &(9 denotes the current fit ol at iterationg, and

Eg denotes expectation using the parameter vedtsr. _ Zm / x: )dx 3)
The M-step then consists in maximizir@(®, ¥(?) with b, 9t

respect to¥F over the parameter spa€e, i.e., finding\Il(q“)

such that = /gcx W) (kalxk ) 4)

QY w) > (v, w)

for all ¥ ¢ Q( 'I;E\e E- an(d) M-steps are iterated until the = /ch(X;‘I’)Pl(X)dX, (5)
differenceL(¥9™Y) — L(¥'9) becomes smaller than some
arbitrarily sr(nall amount.( : = B pIX)], ©)
It is proved in [5] that the observed-data likelihodd®) wherepl : X — [0,1] is the plausibility contour function
is not decreased after an EM iteration, that is, associated ton.
The generalized likelihood ofr is thus equal to the
expectation of the plausibility contour function, with pest
to the probability distributiory.(x; ¥). We can remark that,
when m is consonant, the plausibility contour function can
be seen as the membership function of a fuzzy subsét:of
L(®) is then the probability of that fuzzy subset, according
to Zadeh's definition of the probability of a fuzzy event [17]
In the more general setting of belief function(¥)
I1l. GENERALIZED LIKELIHOOD FUNCTION haS another interpretation that will now be eXpIained. Let

ider th | h rq m;®¥) = m & g.(; ) denote the p.d.f. obtained by
Let us now consider the more complex situation whe mbmmgm with the complete data p.d.f.(-; ¥) using

the relationship between the observed and complete Spﬂcjfﬂémpsters rule [4], [13]:
uncertain, so that observed dataan no longer be associate

L(®tD) > (w(@)

for ¢ = 0,1,2,.... Hence, convergence to some vallg is
ensured as long as the sequeﬂc{dl(q)) forg =0,1,2,...
is bounded from above. As noted in [12, page 85],is, in
most practical applications and except in pathologicatsaa
local maximum of the incomplete data likelihodd¥).

with certainty to a unique subset @f. This situation will be ge(x|m; ¥) = 9:(x; #)pl(x) (@)
formalized as follows. [ 9e(w; ®)pl(u)du

Let us assume the existence of a®aif interpretations, one ge(x; W)pl(x) ®)
and only one of which holds, and a probability measiiren o L(P) '

©. If y has been observed aficc © is the true interpretation, 1,4 quantityZ(¥®) is thus equal to one minus the degree of

then the complete datais known to belong oY (y, #) € X' qnfict betweenn and go(x; ¥). Consequently, maximizing
(see Figure 2). Having observed the probability measur® ;) amounts tominimizing the conflicbetween the obser-

X
is carried to2™ by the mapping) — X(y, 0), which defines \ a4ons (represented by) and the parametric model(-; ¥).
a Dempster-Shafer mass functionon X’. For simplicity, we

will assume from now on tha® is finite: © = {6;,...,0k}, Independence assumptions
in which casem is a discrete mass function with focal sets Let us assume that the observed data (x1,...,2,)is a
Xy = X(y,0;) and masses, = m(Xy) fork=1,..., K. realization from a random vect® = (X1, ..., X,). In many



applications, we can make the following assumptions:

Al: Stochastic independence of the Xy, ..., X,,; we
can thus write, for alu = (ug,...,u,) € X:

ge(w; ®) = [ ] ge(us; ®).
=1

A2: The plausibility contour functiopl(x) can be writ-
ten as

o) = [T pliws).

forall u = (u1,...,u,) € X.
It should be noted that Assumption A2 is totally unrelated to
Al: it is not a property of the random variablés ..., X,

with

We thus have

log L(®) = log L.(¥) — log k(x|m; ®).

Taking the expectation of both sides with respect to the
conditional distribution ofx giveny, using the fit®w (@ for
¥, we get

log L(P) =
Eg@ [log Lo(¥)m] — Eg [logk(X|m; ¥)[m] =

Q(W, \I,(q)) — H(%®, \I,(q))

H(W, ®D) = By, [logk(X|m; ®)|m].

but of the uncertain observation process. It is actually ak®e \We thus have

form of the cognitive independenassumption, as defined by
Shafer [13].

Under Assumptions Al and A2, the expression of the
observed data likelihood (6) can be simplified as:

L(P) = HE\P [pli(X5)]

and the observed data log likelihood can be written as a s
of n terms:

log L(¥) =} log Ew [pli(Xy)].

IV. THE EVIDENTIAL EM ALGORITHM

To maximize functionL (¥) defined by (2)-(6), we propose
to adapt the EM algorithm as follows. Let the E-step now
consist in the calculation of the expectationlaf L.(¥) with
respect tag.(-|m; ¥?) defined by (7):

QT W) = Eg [log L(¥)|m] )
[ log(Le())ge(x; ' )pl(x)dx (10
B L(\I,(q)) :

The M-step is unchanged and requires the maximizatiand
of Q(¥,¥?) with respect to®. The EM algorithm al-
ternately repeats the E- and M-steps above until the in-
crease of observed-data likelihood becomes smaller thae so
threshold. The following theorem shows thatME algorithm
inherits the monotonicity property of the EM algorithm, whi
ensures convergence provided the sequence of incompatde-d
likelihood values remains bounded from above.

Theorem 1:Any sequenc@(\ll(‘”) for¢g = 0,1,2,... of
likelihood values obtained using the’l@ algorithm is non
decreasing, i.e., it verifies

L@ ) > 1(w') (11)

log L(®9D)) —1og L(®(?)

_ Q(\Il(q+1), \I,(Q)) _ Q(\Il(q), \I,(Q))
_ (H(\I,<q+1>’\1,<q>) _ H(\I,m)’q,(q))) . (12)

The first difference on the right-hand side of (12) is nonneg-
ative as®7*Y) has been chosen to maximizg(®, (?)
Wit respect toWw. It thus remains to check that the second
difference on the right-hand side of (12) is non-positivegtt

is, we need to verify that the following inequality holds:

H(®@D 9@y — g(e@ @) <o,

Now for any ¥,

H(®, \Il(q)) _ H(\Il(q), \Il(q)) _

Egw@ |log

Mm
k(X |m; @)

k(X|m; ©)
<logEg@ | ———————5|m 13

Egw [7k(X|y;‘II) |m] =

k(X|m; @(9)
log/ k(x|m; ¥)
k(x|m; @)

1og/k(x|m; Wpl(x)dx =

1og/gc(x|m;\11(q))dx =0,

PLxX)k(x|m; @) dx =

where the inequality in (13) is a consequence of Jensen’s

inequality. O

for all ¢.

To conclude this section, we may note that the p.d.f.

P_roof. The proof is similar to that of Dempster e_t al. [5]? Wegc(x|m; ¥) and, consequently, the2E algorithm depend
give it here for completeness. Litx|m; ¥) be defined using only on the contour functiopi(x) are unchanged ipl(x)

the following expression:

k(x|m; @) =

is multiplied by a constant. Consequently, the results are
unchanged ifm is converted into a probability distribution
by normalizing the contour function, as suggested in [2].



Table |

V. APPLICATION TO PROBABILITY ESTIMATION DATA OF EXAMPLE 1.

Let us assume that the complete data: (z1,...,z,) is a i 1 2 3 4 5
realization from an i.i.d. sampl&1, ..., X, from a Bernoulli pi g'gggg g'gggg g-gggg é'gggg é-gggg
distributionB() with 6 € [0, 1], and the observed data has the f — = 5 S 5
following form: y = (y1,...,y») With y; = (ps, ), where 7. [ 03752 00698 0.6630 10000 0.2139
p; = pl;(0) is the degree of plausibility that; = 0, and gi | 1.0000 1.0000 1.0000 0.4179 1.0000
q; = pl;(1) is the degree of plausibility that; = 1. Assuming
cognitive independence, we get

n 0.04
u) = lei (ul)’ 0.035
=1

for all u = (us,...,u,) € {0,1}"™.
With these assumptions and notations, the observed data lo¢
likelihood can be written as g ooz

log L(6) = > log[(1 — 0)pi + 0q,]
=1
This is the quantity we want to maximize with respectto 0.005
To perform the E-step of the?[ algorithm, we observe
that the complete data log likelihood is a linear combirratio
of the z;:

Figure 3. Observed data likelihood function in Example 1.

lOg Lc(e) = lnH9I1(1 _ 9)17mi _

n VI. NORMAL MEAN AND VARIANCE ESTIMATION

nlog(l — 6) + log (10%0) in. (14)

Let us now assume that the complete data =
(z1,...,2,) € X = R" is a realization from an i.i.d. random
sample from a univariate normal distributiovi(x, 2). The

@ " @ parameter vector is thi¥ = (u,o). The observed data has
Q(6,6'7) = nlog(1 — 6) + log < > & (15)  the formy = (y1,...,yn) With y; = (w;, ;). For eachy;,
i=1 there are two interpretatiorf; andf,;,. Under interpretation
with 0;1, x; = w;; under interpretatiofl;, x; € R. The probability
on for interpretationd;; to be correct isw;, which can thus be
A= 6@)p; +0@g (16) interpret_ed as a degree of re_liability of t_he piece of infation
v v y;. The induced mass functian; on R is

Consequently,

€9 = Egio) [Xi|m] =

The M-step consists in maximizin@(6, (9 defined by (15)
with respect tod. The maximum is obtained for m; = aibw, + (1 — a;)me,

1 <& where §,,, is the Dirac distribution centered as; and mg
gl = n Zgi(q)' (17) is the vacuous mass function defined g (R) = 1. The
= corresponding plausibility contour function is defined by

Starting with the an initial gues&?, the EM algorithm for
this problem thus alternates the computation ofgtﬁé using pli(x)
(16) and the computation of a new estimate dausing (17),

= @0y, (z) + (1 — a;)

until the relative difference for all z € R.
Let g.(-; 4, o) denote the normal p.d.f. with mean and
L(ptD)) — L(9'D) standard deviatio. The observed data log likelihood is
[L(0@)]
becomes less than some threshald log L(p,0) = Zlog (/ ge(m; py 0 )pli(x)dx)

Example 1:The above algorithm was applied to the data
given in Table I. The observed data likelihood function is
displayed in Figure 3. Starting from the randomly chosen
initial value §(*) = 0.4628, the maximum likelihood estimate
6 = 0.7614 was found in 27 iterations, with = 10~. which is to be maximized with respect toando.

Zlog (aige(wis p,0) + 1 — o),
i=1



Table I

The complete data log likelihood is DATA OF EXAMPLE 2.
i 1 2 3 Z 5
log Le(p,0) = w; | 0.7845 03722 03113 03521 -0.2376
n a; | 04966 0.8998 0.8216 0.6449  0.8180
n 1 2
— S log(2m) —nlogo — = > (i —p)° = ; 6 7 8 9 10
2 20° —~ w; | 03830 05592 06574 12218 0.3245
o N a; | 06602 0.3420 0.2897 0.3412  0.5341
n 2 _ 2
- 51og(27r)—nloga— 352 <sz - 2#2171 +u ) .
=1 i=1 1 -
Consequently, ook

Q(E, ¥ = —g log(27) — nlogo |

0.7F

1 n n l
-5 <Z B =2y + u2> . (18 e

=1 =1 [
where%.(q) andﬁi(q) denote, respectively, the expectations\of 4

and X2 with respect to the conditional probability distribution l

0.2F

ge(-|ms; ) = go( 49, 0D) @& m,

0.1f

defined by -0.2

ge(@|my; ¥9) =

Figure 4. Contour plot of the observed data log likelihoodction and
(@
ge(x; ¥ )pli () _ trajector(y in parameter space (broken line) from the ihjtiarameter values
erOO ge(u; \Il(q))pli (v)du (119, 5(9)) (0) to the final MLE (i, 3) (x), for the data of Example 2.
ge(a; W) 5, (2) + (1 — )]
ige(wi; Y +1—a; (9, 0©) = (0,0.8), the maximum likelihood estimate
The following equalities thus hold: (11,0) = (0.3487,0.0273) was found in 30 iterations, with
’ e=10"9.
. (DY, — )@
i ge(wi; ¥ w; + (1 — o) p
%*(q) = ;g (w»-\l'(‘”) JE 1_ a? (19) VII. CONCLUSION
and s ' An iterative procedure for estimating the parameters in a
statistical model using evidential data has been propddesd.
. aige(wi; w2 + (1 — o) [(u(q))2 + (a<q>)2 procedure, which generalizes the EM algorithm, minimizes
BT = () the degree of conflict between the uncertain observatiods an
@ige(wi; T) +1 - a; ( the parametric model. It provides a general mechanism for

statistical inference when the observed data are unceltain
remains an open problem to determine the conditions under
which the obtained estimator is consistent. This is thectopi

The maximum ofQ(¥, ¥?) defined by (18) is obtained
for the following values ofu ando:
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Pt = =3 (21)
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