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Abstract—We consider the problem of statistical parameter
estimation when the data are uncertain and described by belief
functions. An extension of the Expectation-Maximization (EM)
algorithm, called the Evidential EM (E2M) algorithm, is de-
scribed and shown to maximize a generalized likelihood function.
This general procedure provides a simple mechanism for estimat-
ing the parameters in statistical models when observed dataare
uncertain. Two simple application examples are demonstrated.
Keywords: Statistical inference, point estimation, EM al-
gorithm, uncertain data.

I. I NTRODUCTION

In statistics, observations of random quantities are usually
assumed to be either precise or imprecise, i.e., set-valued.
The latter situation occurs, e.g., in the case of censored
data, where an observation is only known to belong to a
set, usually an interval. The Expectation-Maximization (EM)
algorithm [5], [12] has proved to be a powerful mechanism for
performing maximum likelihood parameter estimation from
such incomplete data.

There are situations, however, where the observations are
not only imprecise, but alsouncertain, i.e., partially reliable
[1]. Consider, e.g., a classification problem in which objects
in a population belong to one and only one group. LetX
be the finite set of groups, andX be the group of an object
randomly drawn from the population. In some applications,
realizationsx of X are not known with certainty. Rather,
an expert provides a subjective assessment ofx (a process
known as labeling [7], [8]). This assessment may take the
form of a subsetA ⊆ X , a probability distributionp on X
or, more generally, a mass functionm on X , i.e., a function
m : 2X → [0, 1]. It must be stressed that, in this example,
the data generation process can be decomposed into two
components:

• a random component, which generates a realizationx

from X ;
• a non random component, which produces a mass func-

tion m that models the expert’s partial knowledge ofx.

If this process is repeatedn times independently, the data takes
the form of n mass functionsm1, . . . , mn, considered as a
partial specification of an unknown realizationx1, . . . , xn of
an i.i.d. random sampleX1, . . . , Xn. We will refer to such
data asevidential data. If a parametric model is postulated for
X , how can the method of maximum likelihood be extended to
handle such data? This is the problem considered in this paper.

A generalization of the likelihood function will be proposed,
and an extension of the EM algorithm, called the evidential
EM (E2M) algorithm, will be introduced for its maximization.

We may note that, in the special case where each mass func-
tionsmi is consonant, the data can be equivalently represented
as n possibility distributionx̃1, . . . , x̃n, which constitutes a
fuzzy random sample. The problem of statistical inference from
fuzzy data, which has received a lot of attention in the past
few years [6], [9], [11], [16], is thus a special case of the
problem considered here.

Early attempts to adapt the EM algorithm to evidential data,
in the special case of mixture models with evidential class
labels, were presented in [10], [14], [15]. A rigorous solution
to this problem, which is a special case of the general method
presented in this paper, was introduced in [3].

The rest of the paper is organized as follows. The EM
algorithm will first be recalled in Section II. The extension
of the likelihood function and the E2M algorithm will then be
introduced in Sections III and IV, respectively. The application
of this algorithm will then be illustrated through two statistical
inference problems based on evidential data: binomial proba-
bility estimation (Section V) and univariate normal mean and
variance estimation (Section VI).

II. T HE EM ALGORITHM

The EM algorithm is a broadly applicable mechanism for
computing MLEs from incomplete data, in situations where
ML estimation would be straightforward if complete data were
available [5].

Formally, we assume the existence of two sample spaces
X andY, and a many-to-one mappingϕ from X to Y (see
Figure 1). The observed (incomplete) datay are a realization
from Y, while the correspondingx in X is not observed and
is only known to lie in the set

X (y) = ϕ−1(y) = {x ∈ X|ϕ(x) = y}.

Vector x is referred to as thecomplete datavector. It is
a realization from a random vectorX with p.d.f. gc(x;Ψ),
whereΨ = (Ψ1, . . . , Ψd)

′ is a vector of unknown parameters
with parameter spaceΩ. The observed data p.d.f.g(y;Ψ) is
related togc(x;Ψ) by

g(y;Ψ) =

∫

X (y)

gc(x;Ψ)dx. (1)
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Figure 1. Complete and observed sample spaces.

The EM algorithm approaches the problem of maximizing
the observed-data log likelihoodlog L(Ψ) = log g(y;Ψ) by
proceeding iteratively with the complete-data log likelihood
log Lc(Ψ) = log gc(x;Ψ). Each iteration of the algorithm
involves two steps called the expectation step (E-step) and
the maximization step (M-step).

The E-step requires the calculation of

Q(Ψ,Ψ(q)) = EΨ(q) [log Lc(Ψ)|y] ,

whereΨ(q) denotes the current fit ofΨ at iterationq, and
EΨ(q) denotes expectation using the parameter vectorΨ(q).

The M-step then consists in maximizingQ(Ψ,Ψ(q)) with
respect toΨ over the parameter spaceΩ, i.e., findingΨ(q+1)

such that
Q(Ψ(q+1),Ψ(q)) ≥ Q(Ψ,Ψ(q))

for all Ψ ∈ Ω. The E- and M-steps are iterated until the
differenceL(Ψ(q+1)) − L(Ψ(q)) becomes smaller than some
arbitrarily small amount.

It is proved in [5] that the observed-data likelihoodL(Ψ)
is not decreased after an EM iteration, that is,

L(Ψ(q+1)) ≥ L(Ψ(q))

for q = 0, 1, 2, . . .. Hence, convergence to some valueL∗ is
ensured as long as the sequenceL(Ψ(q)) for q = 0, 1, 2, . . .

is bounded from above. As noted in [12, page 85],L∗ is, in
most practical applications and except in pathological cases, a
local maximum of the incomplete data likelihoodL(Ψ).

III. G ENERALIZED LIKELIHOOD FUNCTION

Let us now consider the more complex situation where
the relationship between the observed and complete spaces is
uncertain, so that observed datay can no longer be associated
with certainty to a unique subset ofX . This situation will be
formalized as follows.

Let us assume the existence of a setΘ of interpretations, one
and only one of which holds, and a probability measureP on
Θ. If y has been observed andθ ∈ Θ is the true interpretation,
then the complete datax is known to belong toX (y, θ) ⊆ X
(see Figure 2). Having observedy, the probability measureP
is carried to2X by the mappingθ → X (y, θ), which defines
a Dempster-Shafer mass functionm on X . For simplicity, we
will assume from now on thatΘ is finite: Θ = {θ1, . . . , θK},
in which casem is a discrete mass function with focal sets
Xk = X (y, θk) and massesmk = m(Xk) for k = 1, . . . , K.
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Figure 2. Uncertain relationship between the complete and observed data
spaces.

With the same notations as in the previous section, the
observed data likelihood may now be defined as:

L(Ψ) =

K∑

k=1

g(y|θk;Ψ)P({θk}) (2)

=

K∑

k=1

mk

∫

Xk

gc(x;Ψ)dx (3)

=

∫

X

gc(x;Ψ)

(
K∑

k=1

mk1Xk
(x)

)
dx (4)

=

∫

X

gc(x;Ψ)pl(x)dx, (5)

= EΨ [pl(X)] , (6)

where pl : X → [0, 1] is the plausibility contour function
associated tom.

The generalized likelihood ofΨ is thus equal to the
expectation of the plausibility contour function, with respect
to the probability distributiongc(x;Ψ). We can remark that,
when m is consonant, the plausibility contour function can
be seen as the membership function of a fuzzy subset ofX :
L(Ψ) is then the probability of that fuzzy subset, according
to Zadeh’s definition of the probability of a fuzzy event [17].

In the more general setting of belief functions,L(Ψ)
has another interpretation that will now be explained. Let
gc(·|m;Ψ) = m ⊕ gc(·;Ψ) denote the p.d.f. obtained by
combining m with the complete data p.d.f.gc(·;Ψ) using
Dempster’s rule [4], [13]:

gc(x|m;Ψ) =
gc(x;Ψ)pl(x)∫

X
gc(u;Ψ)pl(u)du

(7)

=
gc(x;Ψ)pl(x)

L(Ψ)
. (8)

The quantityL(Ψ) is thus equal to one minus the degree of
conflict betweenm andgc(x;Ψ). Consequently, maximizing
L(Ψ) amounts tominimizing the conflictbetween the obser-
vations (represented bym) and the parametric modelgc(·;Ψ).

Independence assumptions

Let us assume that the observed datax = (x1, . . . , xn) is a
realization from a random vectorX = (X1, . . . , Xn). In many



applications, we can make the following assumptions:
A1: Stochastic independence of the r.v.X1, . . . , Xn; we

can thus write, for allu = (u1, . . . , un) ∈ X :

gc(u;Ψ) =

n∏

i=1

gc(ui;Ψ).

A2: The plausibility contour functionpl(x) can be writ-
ten as

pl(u) =

n∏

i=1

pli(ui),

for all u = (u1, . . . , un) ∈ X .
It should be noted that Assumption A2 is totally unrelated to
A1: it is not a property of the random variablesX1 . . . , Xn,
but of the uncertain observation process. It is actually a weaker
form of thecognitive independenceassumption, as defined by
Shafer [13].

Under Assumptions A1 and A2, the expression of the
observed data likelihood (6) can be simplified as:

L(Ψ) =

n∏

i=1

EΨ [pli(Xi)] ,

and the observed data log likelihood can be written as a sum
of n terms:

log L(Ψ) =
n∑

i=1

log EΨ [pli(Xi)] .

IV. T HE EVIDENTIAL EM ALGORITHM

To maximize functionL(Ψ) defined by (2)-(6), we propose
to adapt the EM algorithm as follows. Let the E-step now
consist in the calculation of the expectation oflog Lc(Ψ) with
respect togc(·|m;Ψ(q)) defined by (7):

Q(Ψ,Ψ(q)) = EΨ(q) [log Lc(Ψ)|m] (9)

=

∫
log(Lc(Ψ))gc(x;Ψ(q))pl(x)dx

L(Ψ(q))
.(10)

The M-step is unchanged and requires the maximization
of Q(Ψ,Ψ(q)) with respect toΨ. The E2M algorithm al-
ternately repeats the E- and M-steps above until the in-
crease of observed-data likelihood becomes smaller than some
threshold. The following theorem shows that E2M algorithm
inherits the monotonicity property of the EM algorithm, which
ensures convergence provided the sequence of incomplete-data
likelihood values remains bounded from above.

Theorem 1:Any sequenceL(Ψ(q)) for q = 0, 1, 2, . . . of
likelihood values obtained using the E2M algorithm is non
decreasing, i.e., it verifies

L(Ψ(q+1)) ≥ L(Ψ(q)) (11)

for all q.
Proof. The proof is similar to that of Dempster et al. [5]. We
give it here for completeness. Letk(x|m;Ψ) be defined using
the following expression:

k(x|m;Ψ) =
Lc(Ψ)

L(Ψ)
.

We thus have

log L(Ψ) = log Lc(Ψ) − log k(x|m;Ψ).

Taking the expectation of both sides with respect to the
conditional distribution ofx given y, using the fitΨ(q) for
Ψ, we get

log L(Ψ) =

EΨ(q) [log Lc(Ψ)|m] − EΨ(q) [log k(X|m;Ψ)|m] =

Q(Ψ,Ψ(q)) − H(Ψ,Ψ(q))

with
H(Ψ,Ψ(q)) = EΨ(q) [log k(X|m;Ψ)|m] .

We thus have

log L(Ψ(q+1)) − log L(Ψ(q))

= Q(Ψ(q+1),Ψ(q)) − Q(Ψ(q),Ψ(q))

−
(
H(Ψ(q+1),Ψ(q)) − H(Ψ(q),Ψ(q))

)
. (12)

The first difference on the right-hand side of (12) is nonneg-
ative asΨ(q+1) has been chosen to maximizeQ(Ψ,Ψ(q))
with respect toΨ. It thus remains to check that the second
difference on the right-hand side of (12) is non-positive; that
is, we need to verify that the following inequality holds:

H(Ψ(q+1),Ψ(q)) − H(Ψ(q),Ψ(q)) ≤ 0.

Now for anyΨ,

H(Ψ,Ψ(q)) − H(Ψ(q),Ψ(q)) =

EΨ(q)

[
log

k(X|m;Ψ)

k(X|m;Ψ(q))
|m

]

≤ log EΨ(q)

[
k(X|m;Ψ)

k(X|m;Ψ(q))
|m

]
(13)

and

log EΨ(q)

[
k(X|y;Ψ)

k(X|m;Ψ(q))
|m

]
=

log

∫
k(x|m;Ψ)

k(x|m;Ψ(q))
pl(x)k(x|m;Ψ(q))dx =

log

∫
k(x|m;Ψ)pl(x)dx =

log

∫
gc(x|m;Ψ(q))dx = 0,

where the inequality in (13) is a consequence of Jensen’s
inequality. �

To conclude this section, we may note that the p.d.f.
gc(x|m;Ψ) and, consequently, the E2M algorithm depend
only on the contour functionpl(x) are unchanged ifpl(x)
is multiplied by a constant. Consequently, the results are
unchanged ifm is converted into a probability distribution
by normalizing the contour function, as suggested in [2].



V. A PPLICATION TO PROBABILITY ESTIMATION

Let us assume that the complete datax = (x1, . . . , xn) is a
realization from an i.i.d. sampleX1, . . . , Xn from a Bernoulli
distributionB(θ) with θ ∈ [0, 1], and the observed data has the
following form: y = (y1, . . . ,yn) with yi = (pi, qi), where
pi = pli(0) is the degree of plausibility thatxi = 0, and
qi = pli(1) is the degree of plausibility thatxi = 1. Assuming
cognitive independence, we get

pl(u) =

n∏

i=1

pli(ui),

for all u = (u1, . . . , un) ∈ {0, 1}n.
With these assumptions and notations, the observed data log

likelihood can be written as

log L(θ) =

n∑

i=1

log [(1 − θ)pi + θqi] .

This is the quantity we want to maximize with respect toθ.
To perform the E-step of the E2M algorithm, we observe

that the complete data log likelihood is a linear combination
of the xi:

log Lc(θ) = ln

n∏

i=1

θxi(1 − θ)1−xi =

n log(1 − θ) + log

(
θ

1 − θ

) n∑

i=1

xi. (14)

Consequently,

Q(θ, θ(q)) = n log(1 − θ) + log

(
θ

1 − θ

) n∑

i=1

ξ
(q)
i (15)

with

ξ
(q)
i = Eθ(q) [Xi|m] =

θ(q)qi

(1 − θ(q))pi + θ(q)qi

. (16)

The M-step consists in maximizingQ(θ, θ(q)) defined by (15)
with respect toθ. The maximum is obtained for

θ(q+1) =
1

n

n∑

i=1

ξ
(q)
i . (17)

Starting with the an initial guessθ(0), the E2M algorithm for
this problem thus alternates the computation of theξ

(q)
i using

(16) and the computation of a new estimate forθ using (17),
until the relative difference

L(θ(q+1)) − L(θ(q))

|L(θ(q))|

becomes less than some thresholdǫ.
Example 1:The above algorithm was applied to the data

given in Table I. The observed data likelihood function is
displayed in Figure 3. Starting from the randomly chosen
initial value θ(0) = 0.4628, the maximum likelihood estimate
θ̂ = 0.7614 was found in 27 iterations, withǫ = 10−6.

Table I
DATA OF EXAMPLE 1.

i 1 2 3 4 5
pi 0.5968 0.6478 0.5962 1.0000 1.0000
qi 1.0000 1.0000 1.0000 0.3289 0.1892

i 6 7 8 9 10
pi 0.3752 0.0698 0.6630 1.0000 0.2139
qi 1.0000 1.0000 1.0000 0.4179 1.0000

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

θ

L(
θ)

Figure 3. Observed data likelihood function in Example 1.

VI. N ORMAL MEAN AND VARIANCE ESTIMATION

Let us now assume that the complete datax =
(x1, . . . , xn) ∈ X = R

n is a realization from an i.i.d. random
sample from a univariate normal distributionN (µ, σ2). The
parameter vector is thisΨ = (µ, σ). The observed data has
the formy = (y1, . . . ,yn) with yi = (wi, αi). For eachyi,
there are two interpretationsθi1 andθi2. Under interpretation
θi1, xi = wi; under interpretationθi2, xi ∈ R. The probability
for interpretationθi1 to be correct isαi, which can thus be
interpreted as a degree of reliability of the piece of information
yi. The induced mass functionmi on R is

mi = αiδwi
+ (1 − αi)mR,

where δwi
is the Dirac distribution centered aswi and mR

is the vacuous mass function defined bymR(R) = 1. The
corresponding plausibility contour function is defined by

pli(x) = αiδwi
(x) + (1 − αi)

for all x ∈ R.
Let gc(·; µ, σ) denote the normal p.d.f. with meanµ and

standard deviationσ. The observed data log likelihood is

log L(µ, σ) =

n∑

i=1

log

(∫
∞

−∞

gc(x; µ, σ)pli(x)dx

)

=
n∑

i=1

log (αigc(wi; µ, σ) + 1 − αi) ,

which is to be maximized with respect toµ andσ.



The complete data log likelihood is

log Lc(µ, σ) =

−
n

2
log(2π) − n log σ −

1

2σ2

n∑

i=1

(xi − µ)
2

=

−
n

2
log(2π)−n log σ−

1

2σ2

(
n∑

i=1

x2
i − 2µ

n∑

i=1

xi + µ2

)
.

Consequently,

Q(Ψ,Ψ(q)) = −
n

2
log(2π) − n log σ

−
1

2σ2

(
n∑

i=1

β
(q)
i − 2µ

n∑

i=1

γ
(q)
i + µ2

)
, (18)

whereγ
(q)
i andβ

(q)
i denote, respectively, the expectations ofX

andX2 with respect to the conditional probability distribution

gc(·|mi;Ψ
(q)) = gc(·; µ

(q), σ(q)) ⊕ mi

defined by

gc(x|mi;Ψ
(q)) =

gc(x;Ψ(q))pli(x)
∫ +∞

−∞
gc(u;Ψ(q))pli(u)du

=

gc(x;Ψ(q)) [δwi
(x) + (1 − αi)]

αigc(wi;Ψ
(q)) + 1 − αi

.

The following equalities thus hold:

γ
(q)
i =

αigc(wi;Ψ
(q))wi + (1 − αi)µ

(q)

αigc(wi;Ψ
(q)) + 1 − αi

(19)

and

β
(q)
i =

αigc(wi;Ψ
(q))w2

i + (1 − αi)
[(

µ(q)
)2

+
(
σ(q)

)2]

αigc(wi;Ψ
(q)) + 1 − αi

.

(20)
The maximum ofQ(Ψ,Ψ(q)) defined by (18) is obtained

for the following values ofµ andσ:

µ(q+1) =
1

n

n∑

i=1

γ
(q)
i (21)

and

σ(q+1) =

√√√√ 1

n

n∑

i=1

β
(q)
i −

(
µ(q+1)

)2
. (22)

In E-step of the E2M algorithm for this problem thus
consists in the calculation ofγ(q)

i andβ
(q)
i for all i using (19)

and (20), respectively. The M-step then updates the estimates
of µ andσ using (21) and (22). The algorithm stops when the
relative increase of the observed data likelihood becomes less
than some thresholdǫ.

Example 2:The above algorithm was applied to the data
shown in Table II. The observed data log likelihood function
is displayed in Figure 4. Starting from the initial value

Table II
DATA OF EXAMPLE 2.

i 1 2 3 4 5
wi 0.7845 0.3722 0.3113 0.3521 -0.2376
αi 0.4966 0.8998 0.8216 0.6449 0.8180

i 6 7 8 9 10
wi 0.3830 0.5592 0.6574 1.2218 0.3245
αi 0.6602 0.3420 0.2897 0.3412 0.5341
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Figure 4. Contour plot of the observed data log likelihood function and
trajectory in parameter space (broken line) from the initial parameter values
(µ(0), σ(0)) (o) to the final MLE(µ̂, σ̂) (x), for the data of Example 2.

(µ(0), σ(0)) = (0, 0.8), the maximum likelihood estimate
(µ̂, σ̂) = (0.3487, 0.0273) was found in 30 iterations, with
ǫ = 10−6.

VII. C ONCLUSION

An iterative procedure for estimating the parameters in a
statistical model using evidential data has been proposed.This
procedure, which generalizes the EM algorithm, minimizes
the degree of conflict between the uncertain observations and
the parametric model. It provides a general mechanism for
statistical inference when the observed data are uncertain. It
remains an open problem to determine the conditions under
which the obtained estimator is consistent. This is the topic of
on-going research.
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