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Abstract— In the current approach of nuclear power plant 
Probabilistic Risk Assessment, parameter uncertainty due to a 
lack of knowledge is generally represented by probability 
distribution (e.g. log-normal) whose mean or median is 
considered as point value estimated from operating experience 
feedback. In this paper, such an approach is shown to lead to 
potential erroneous and ambiguous results in decision making. 
To overcome this problem, the Dempster-Shafer Theory of 
Evidence is considered. In this paper, a so-called unified 
Dempster- Shafer representation which allows to deal with 
current issues is proposed to characterize the parameter 
uncertainty in an appropriate manner. The use of this 
representation is illustrated through a practical example of 
Probabilistic Risk Assessment.  
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I. INTRODUCTION 
Probabilistic Risk Assessment (PRA) [1] is a methodology 

which provides a quantitative assessment of the risk of 
accidents at Nuclear Power Plants (NPP). It involves the 
development of models that delineate the response of systems 
and of operators to initiating events that could lead to core 
damage or a release of radioactivity to the environment. The 
evaluation of the frequency of such an accident relies on the 
assessment of failure probability of systems by means of 
event/fault tree analysis modelling component failures. 
However, in the context of NPP where available data are 
insufficient or imprecise, it is often difficult to estimate 
accurately the failure rates of individual components or the 
frequency of events. Therefore, this uncertainty needs to be 
taken into account in the decision making process. 

In general, uncertainties can be categorized as either 
aleatory or epistemic. Aleatory uncertainty reflects our 
inability to predict random observable events, whereas 
epistemic uncertainty represents lack of knowledge with 
respect to the models or to the appropriate values to use for 
quantities that are assumed to be fixed but poorly known in 
the context of a particular analysis [2]. Many recent researches 
have shown that uncertainties in PRA are mainly epistemic 
[1]. Epistemic uncertainties can be roughly split into three 
categories as done in [1]. These are: parameter, model, and 

completeness uncertainties. In this article, we focus mainly on 
parameter uncertainty. 

In the current PRA practice, parameter uncertainty 
representation relies on probability theory by using a single 
subjective probability distribution, such as a log-normal one. 
Nevertheless, the choice of this distribution is somehow 
arbitrary and mainly made because of conventional and 
historical reason. Moreover, numerous authors conclude that 
there are limitations in using probability theory to represent 
epistemic uncertainty [3][4]. A number of alternative 
representation frameworks, e.g. evidence theory, possibility 
theory (or fuzzy intervals) or interval analysis [4], have been 
proposed to represent epistemic uncertainty in a more 
appropriate manner. Evidence and possibility theories, in 
particular, may be the most attractive ones for risk assessment, 
because of their mathematical representation power. 

In the section II of this paper, we will show that the 
traditional probabilistic approach for parameter uncertainty 
representation in reliability system can lead to erroneous 
results, thus wrong decision. A brief presentation of the 
Dempster-Shafer approach will be proposed in section III. The 
representation of parameter uncertainty within evidence 
theory on the basis of a mean or median associated to maximal 
and minimal values will be considered in section IV. The 
section V will propose a unified Dempster-Shafer 
representation to characterize the parameter uncertainty in 
PRA model. Finally, some results and conclusions on the 
application of this theory will be discussed in the final section 
through a practical PRA example. 

II. CHARACTERIZATION OF PARAMETER UNCERTAINTY BY THE 
PROBABILITY THEORY 

In the early stage, PRA models are built as probabilistic 
models to reflect the random nature of the constituent basic 
events such as initiating events and component failures. 
Randomness is one manifestation of a form of uncertainty 
which is often called aleatory uncertainty. A PRA is, 
therefore, a probabilistic model that characterizes the aleatory 
uncertainty associated with accidents at nuclear power plants 
[1]. Some probabilistic models like Poisson model, 
exponential model, and so on, are used for this purpose. The 



 
model parameters (ex. failure rate or initiating event 
frequency) are assumed to be constant over the time. The 
values of those (assumed) fixed but unknown parameters can 
be estimated using appropriate data. The two approaches 
widely used in PRA are the Bayesian and the frequentist ones. 
In the first method [1][5], the parameters are considered as 
random variables: they are associated with a prior distribution 
of probability which models the epistemic uncertainty. The 
posterior distribution is obtained by applying the Bayes 
formulae according to the available data. The application of 
the second approach, which is often chosen in [6], provides 
generally a point estimate obtained from Maximum 
Likelihood Estimation (MLE) and a confidence interval. In 
this method, when the data are sufficiently available, the point 
estimate of the estimator is approximately equal to the true 
value of the parameter. However, when available data are 
poor, the confidence interval is extremely large, being the 
expression of the insufficiency of the data. This type of 
uncertainty can be referred to lack of knowledge (or epistemic 
uncertainty). On the one hand, the 90% confidence interval 
obtained in PRA is expressed in terms of percentiles of a chi 
squared distribution. On the other hand, the current PRA 
practice [5][6] assumes widely a different distribution, that is 
to say the log-normal one, to take into account the parameter 
epistemic uncertainty. The distribution is then parameterised 
by the point estimate as the mean value and what is called the 
error factor. The use of the log-normal distribution is 
somehow arbitrary and widely assumed in PRA mainly 
because of conventional and historical reasons. This 
representation could be interpreted as a subjective probability 
assigned to each value in the confidence interval. The 
subjective probability is considered as the degree of belief that 
the parameter could take in this interval. However, as we can 
see later the use of this log-normal distribution can lead to an 
erroneous decision in risk analysis.   

A. Limits of the log-normal distribution  
In the following example, we consider a simple system of two 
identical motor operated valves (MOV) in parallel. The 
system unavailability point estimate Q is calculated in terms of 
each MOV failure probability p (per demand) by  
                                          2pQ =                                      (1) 
This formula takes into account the state of knowledge 
correlation for identical components that are modelled by the 
same parameter in PRA model [7]. The uncertainty on each 
failure probability is modelled by a log-normal distribution 
with the error factor (EF) and the mean associated. As a result, 
the output variable Q follows a log-normal distribution as well 
(product of log-normal distributed variables). Now we are 
interested in assessing the probability that the output system 
unavailability exceeds a specified threshold θ, say 61 −= Eθ . 
Historically, it is typical to use assurance levels of 0.95 (95% 
percentile) as being characteristic of acceptability. It has been 
shown in [8] that if the failure probability of each component 
p given in data book has the point estimate value which is 
inferior or equal to θ258.0 = 2.58 E-4, the 95% percentile of 
the output distribution will always be inferior or equal to 

61 −= Eθ  for all input error factors. This means that we have 
always at least 95% chance that the output failure probability 

of this system will not exceed the threshold. As a result, the 
decision maker doesn’t need to care of uncertainties 
associated with input estimate values. However, what would 
happen if we assumed other probabilistic distributions. These 
conclusions could be no longer assured. 

B. Impact of the meaning given to estimated value on 
decision making results 

Up to now, in PRA for NNP there is still an ambiguous 
interpretation of the point estimate which is used to represent 
statistic quantity of log-normal distribution. In early WASH-
1400 database, the best estimate (point estimate) is presented 
as a median value while it is recommended to interpret it as a 
mean value in recent NUREG-1150 PRA database because the 
mean value is higher than median value [1][9]. Apostolakis 
[7] has proposed to use the median rather than the mean value 
because the later is very sensitive to the tails of the 
distributions while the percentiles are not. This insensitivity 
makes the uses of percentiles preferable when we intend to 
measure the probability for a specific indicator to be greater 
than a given safety goal. While a robust and appropriate 
choice hasn’t been established yet, the following example 
shows that, the choice of median or mean value for input 
uncertainty representation can lead to very different results for 
the decision making. 
 

 
Figure 2. Output cumulative distribution functions (CDF) in two 
cases in regard with the threshold 1E-6 
 
The previous example is considered in which the point 
estimate of each MOV failure probability is 2.1E-4 and the 
error factor is 8.0. In the case of this point estimate considered 
as the mean value of a log-normal distribution, the 95% 
percentile of output system unavailability is 

61764.5)1(
95.0 −<−= EEr  as expected in subsection A. On the 

other hand, in the case of this point estimate considered as 
median value, the 95% percentile of output system 
unavailability is 6168.2)2(

95.0 −>−= EEr . As shown in the Figure 
2, we have only 3% in the first case but 10.72% in the second 
case that output system unavailability exceeds the threshold 

61 −= Eθ . As a result, the choice, for an input uncertain 
variable, to interpret the point estimate value as a mean value 
rather than a median one leads to very different result and may 
have a significant impact on final decision. The difference 
between results in those two cases becomes more significant 
when the error factor is high. 
 
In this section, we have seen that, by choosing a particular 
probability distribution (i.e. a log-normal one whose mean or 
median is considered as the point value estimated from 



 
operating experience feedback) in uncertainty analysis, the 
results in terms of decision making can be very ambiguous 
and erroneous. Moreover, it is not straightforward to define 
the form of a specified probabilistic distribution for non 
observable quantities like input parameters in PRA even if 
applying the expert’s elicitation process. To overcome this 
problem, it is more appropriate to use families of probability 
distributions for imprecise information rather than using a 
single probabilistic distribution [2][3]. Such families can be 
obtained by resorting to probability boxes or possibility 
distributions or by belief functions. A comparison and formal 
links existing between the possibility theory, imprecise 
probability and belief functions have been studied in [3][10] 
to represent imprecise information. By using the results in 
[3][10], this article proposes to adopt the Dempster-Shafer 
theory for uncertainty analysis in PRA model according to the 
available data information. This theory is chosen because it 
can be considered as a generalization of the classical 
probability theory and even of possibility theory which allows 
a flexible way of uncertainty representation for different 
nature data sources. Furthermore, Dempster-Shafer 
calculations can use much of the probabilistic propagation 
framework that exists in practical PRA model. 

III.  DEMPSTER-SHAFER THEORY OF EVIDENCE   
The Dempster-Shafer Theory (DST) is a hybrid 
representation, which combines the probabilistic paradigm and 
the interval paradigm to a unified representation. For Ferson 
[10], DST over the set ℜ of the real numbers resembles to 
discrete probability distribution except that the locations at 
which the probability mass resides are sets of real values, 
rather than precise points. These sets associated with non null 
mass are called focal elements. The correspondence of 
probability masses associated with the focal elements is called 
the basis belief assignment (BBA), noted m. This is analogous 
to the probability mass function for an ordinary discrete 
probability distribution. In some publications, this term is also 
called basis probability assignment [10] which can mislead to 
the assumption that m might be strictly a probability. The 
probability theory as well as the evidence theory offers either 
an objective or a subjective point of view of knowledge [11]. 
In this paper, the term belief is preferred because the 
uncertainty quantification is mainly involved in the 
assessment of degree of belief of experts with regard to 
uncertain information. In DST, this BBA on the real line is a 
mapping ]1,0[2: → ℜm  where 0)Ø( =m  and ∑

ℜ⊆

=
A

Am 1)( , 

for all subsets A of ℜ. Any subset A that satisfies m(A) >0 is a 
focal element of BBA m over ℜ. Unlike a discrete probability 
distribution where the mass is concentrated at distinct points, 
the focal elements in DST may overlap one another. 
Associated with each BBA are two functions Bel, Pl which 
are referred to as belief and plausibility functions. The belief 
and plausibility functions of uncertain variable x on interval 

ℜ⊂],[ aa are defined as: 
                     ∑ ⊆

=∈
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aaA i
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                     ∑ ∩
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In the perspective of the imprecise probabilities theory [11], 
the plausibility function Pl(A) and belief function Bel(A) are 
upper and lower probabilities for any subset ℜ⊆A . These 
functions bound on all possible cumulative distributions 
according to the given BBA. When the focal elements are 
reduced to singletons, the previous functions coincide with the 
cumulative distribution function in probability theory. In the 
following section, we will see how these two functions are 
used to represent the parameter uncertainty according to 
partial information through the notion of p-box.       

IV. PARAMETER UNCERTAINTY REPRESENTATION WITH THE 
THEORY OF EVIDENCE 

In the Dempster-Shafer approach, the representation of the 
information on the epistemic uncertain variables relies on 
focal elements and their basic belief assignment. In many risk 
applications, the data is often provided  in a way that a most 
likely value of the variable (best estimate) associated with the 
confidence interval is given, for example, [lower, best 
estimate, upper]. Ferson et al [10] have developed uncertainty 
representations by probability bounds (also called p-box) 
linked to DST according to these kinds of information. The 
following representations are different from one another 
depending on the way that expert considers the best estimate 
as the mean or the median of epistemic uncertain variables. 

     
 - First case: The best estimate is considered as the mean  

When an expert supplies the mean and the support [lower, 
upper] of (epistemic or aleatory) uncertain variable, we can 
build a family of distributions for the parameter. According to 
[3] only p-boxes seem to capture information in a reasonable  
 

 
Figure 3 . Pl/ Bel functions with given mean and support vs. CDF of 

log-normal 
 
way. However, in their opinion, the mean value does not seem 
to bring much information on the distribution, and the 
problem of finding a better, tighter representation of this kind 
of information remains open. Moreover, while the average 
value is very easy and often natural to compute from statistical 
data, it is not clear that this value is cognitively plausible, that 
is, one may doubt that a single representative value of an 
unknown quantity provided by an expert refers to the mean 
value. Figure 3 presents a p-box of a component failure 
probability in which the support is [4.2E-5, 1.05E-3] and the 
point estimate is 2.1E-04. This p-box encodes a family of 
probabilistic distributions with the given support and the mean 
value. The upper probability bound (respectively lower 
bound) of this p-box can be approximately seen as plausibility 
function (respectively belief function). The Dempster-Shafer 
focal elements within can be then obtained from this p-box by 



 
using a canonical discretization with N equiprobable thin 
rectangles or slivers [10]. 
 

- Second case: The best estimate is considered as the 
median  
In this case, the median and the support are provided. This 
knowledge can be exactly represented by focal elements such 
that 5.0]),([]),([ == uppermedmmedlowerm  where median 
value is noted med. Figure 4 presents the belief and 
plausibility functions of the component failure probability for 
this kind of information. This p-box encodes a family of 
probabilistic distributions with the given support and median 
value. 
 

 
Figure 4. Pl/ Bel functions with given median and support     
 
In this section, we have seen that two different interpretations 
of best estimate give different Dempster-Shafer 
representations which could lead to different results in 
decision making. In [3], the authors argue that the mode may 
best correspond to the notion of best estimate, as being the 
most frequently observed value or the most likely value. In 
this paper, we only use the two previous interpretations which 
are widely used in PRA community to propose an aggregated 
Dempster-Shafer representation as shown in the next section.        

V. UNCERTAINTY REPRESENTATION IN PRA 
In recent years, the use of DST to represent the uncertainties 
has been studied in risk analysis. In [13] the DST is applied in 
the context of risk analysis in drinking water treatment where 
the belief function is used to encode input data given by fuzzy 
values, interval-valued probabilities and statistical data. In the 
reference works [14][15], the DST replaces the probabilistic 
calculation on the Boolean model underlying the fault and 
event trees. By doing this, the uncertainty model is not built 
on the failure probabilities, but on the component states 
themselves. Recently, Dugra Rao et al [16] have studied the 
use of probability bounds approach on level-1 PRA. In their 
approach the uncertainties associated with input parameters 
are characterized by log-normal distributions in which mean 
values and standard deviations are given in term of intervals. 
By this way, we get a family of log-normal distributions that 
represents the uncertainty on the mean and the standard 
deviations. Consequently, this representation does not take 
into account the uncertainty on the use of log-normal 
distribution. Further, the input data presented in their case 
study, where standard deviations are given in terms of 
intervals, are not compatible to those provided in most of PRA 
data books. Indeed, for each failure event probability, the 

PRA data books of NPP often provides the best estimate value 
and the 90% confidence interval or an error factor instead. In 
such a context, this paper proposes to use the Dempster-Shafer 
representation previously presented to deal with the 
uncertainty on failure probabilities without relying on 
specified probability distribution or modifying the Boolean 
calculation of event/fault tree in PRA model. By using the 
Dempster-Shafer representation, the support can be estimated 
by using the concept of “error factor” or the 5% and 95% 
percentiles directly as done with fuzzy approach [17][18] and 
the best estimate can be regarded as mean or median. 
However, by doing so, we admit that the support contains only 
the information within a 90% confidence interval and 
therefore completely neglect the possibility to have values 
lower than the 5% percentile or higher than the 95% percentile 
of the original log-normal probability distributions.   
 
As early mentioned, since there are two ways of interpretation 
of point estimate for input parameter uncertainty 
representation in PRA model, in this section we propose to 
consider these two ways of interpretation as two different 
Dempster-Shafer representations given by two experts. DST 
has an advantage in natural way of combining different 
sources of evidence and many methods have been proposed to 
construct a aggregated Dempster-Shafer representation. In 
[19], P. Limbourg has pointed out the advantage and 
robustness of the method of weighted mixing proposed by 
Ferson in [11] for merging different Dempster- Shafer 
structures. This method can be seen as the well known “linear 
opinion pool” algorithm for aggregation in probability theory 
if an uncertain parameter is represented by different 
probability distributions [20]. However as discussed in section 
2, relying on a specified probability distribution for parameter 
uncertainty representation in PRA is not recommended. 
Therefore, the appropriate approach we propose is to define a 
(aggregated) unified Dempster-Shafer representation using the 
weighted mixing algorithm as shown on the  figure 5.  As can 
be seen, this representation contains as well the aggregated  
 

 
Figure 5. Pl/ Bel functions of the unified (aggregated) Dempster -
Shafer representation 
 
probabilistic distribution of two log-normal distributions in 
which the point estimate are considered as mean or median. 
On the one hand, this unified Dempster-Shafer representation 
allows to characterize the uncertainty associated to input 
parameters by a family of probability distributions without 
relying on the choice of a particular kind of probability 
distribution. On the other hand, this representation includes 
also the uncertainty due to the ambiguous interpretations of 
the point estimate. As a result, the output result carrying out 
with this representation can be considered as objective, thus 



 
used for final decision making. In the next section, we will 
illustrate the use of this representation through a practical 
example in NNP PRA model.   

VI. PRACTICAL EXEMPLE 

A. Problem situation  
In order to illustrate the application of theory of evidence 
approach with the proposed unified Dempster-Shafer 
representation in PRA model for decision making, we 
implement it on one of applications of level 1 PRA in NPP at 
EDF:  the precursor events analysis. This application consists 
of studying the increment of a risk metric (core damage 
frequency) when an event challenging the safety occurs at the 
nuclear plant. The risk metric is expressed as a function of 
input parameters such as the frequency of initiating event, 
component failure rate or the human error probability…The 
potential risk increase indicator (IRP) is used and can be 
expressed as the following:  

          )( 1, CDFCDF
T
tIRP i −×=                          (4) 

where CDF is the baseline risk and CDFi,1 is the risk given 
that basic event (BEi) is certain (failure  probability=1). The 
unavailability duration of the considered basic event (t) within 
the annual duration of operation of plant (T) are not subjected 
to uncertainty in this study. 
 
Any event that has an IRP greater than the threshold (1E-6) 
will be considered as a precursor event. In this example, to 
simplify the calculations, we choose an accidental sequence in 
an event tree (associated to the initiating event: loss of one 
6,6kV board on normal shutdown mode of plant) which leads 
to core damage. The event considered in this paper is the 
failure on demand of a turbine driven pump of the auxiliary 
feedwater system. The duration of this unavailability is 72h 
within the annual duration of normal shutdown mode 
(T=236h). The PSA software used by EDF (Risk Spectrum® 
[21]) provides 89 minimal cut sets (MCS) for baseline risk R 
and 31 MCS for the risk Ri,1. We identified 30 parameters 
involved in the IRP calculation and among them, 28 
parameters associated with uncertainty. The IRP point 
estimate calculated in Risk Spectrum is 2.17E-7 < 1E-6 which 
shows that this event is not a precursor one.  

B. Uncertainty representation  
The point estimates and error factors of parameters which are 
involved in IRP calculation are provided by EDF data books. 
For uncertainty Dempster-Shafer representation, the support 
of each input parameter is estimated by using the concept of 
error factor in which the lower bound = point estimate/ EF and 
the upper bound = point estimate * EF. The belief and 
plausibility functions of each parameter are calculated from 
the unified Dempster-Shafer representation using the weighted 
mixture aggregation as depicted in section 5. 

C.  Uncertainty propagation 
Propagating uncertainties specified in the Dempster-Shafer 
framework through system functions consists of propagating 
focal elements. However, the technique of propagating is not 
as straightforward as for the probabilistic approach. As 

discussed in [19], being a synthesis between probabilistic and 
interval arithmetic, DST relies on optimization to propagate 
focal elements through the system function. Given a focal 
element from the joint distribution, the mass is propagated 
through the system function. Thus, the propagation of a focal 
element involves the solution of two optimization problems 
(min, max). The propagation speed therefore heavily depends 
on the ‘well-behaving’ of the function and the required 
accuracy. The IRP or other indicators in PRA applications are 
often functions whose monotonicity properties with respect to 
input parameters are usually unknown. It is therefore 
necessary to use complex optimization techniques.   

D. Results and interpretations  
The table 1 shows resulting statistics of IRP output by using 
Monte Carlo sampling with 50000 samples in the probabilistic 
approach which is used in current PRA practice. The second 
column presents results of the case in which the point estimate 
is interpreted as the mean value of a log-normal distribution 
and the third column presents results of the case in which 
point estimate is interpreted as the median value. We see that 
the percentiles of IRP in former case are smaller than that of 
later. Moreover, in the first case where we have only 3.8% 
chance that IRP exceeds the threshold  61 −= Eθ , decision    
 
Table 1. Statistics on the resulting IRP output in probabilistic case 

 Point estimate   
as mean 

Point estimate  
as median 

Mean 2.167E-7 1.055E-6 
Median 5.754E-8 2.438E-7 
5% percentile 4.632E-9 1.778E-8 
95% percentile 8.226E-7 4.001E-6 
Pr(IRP>1E-6) 0.038 0.199 

 
makers can think that the event may not be a precursor event. 
However, in the second case where we have a very higher 
percentage (19.9 %), the final decision could be different. In 
both cases, the final decision can not be surely made because 
of the unjustified assumption of log-normal distribution. 
 
The table 2 shows resulting statistics of IRP output when 
using the unified Dempster-Shafer representation obtained 
from the aggregation of two interpretations of point estimate 
without relying on any specified probabilistic distributions. In 
order to implement the Dempster-Shafer framework for a 
PRA model, we used the imprecise probability propagation  
 
Table 2. Statistics on the resulting IRP output with DST 

Mean  [1.829E-7 ,  1.513E-6] 
Median [1.086E-7 ,  4.148E-7] 
5% percentile [ 8.014E-9,  8.305E-8 ] 
95% percentile [ 5.552E-7,  1.285E-5 ] 
Pr(IRP>1E-6) [0.000 , 0.278 ] 

 
package for R programming language. This is a free open 
source package outlined in [22]. The resulting plausibility and 
belief functions of IRP are shown in the Figure 6. Unlike the 
probabilistic approach where output results are represented by 
single values, the results in Dempster-Shafer approach are 
given in terms of intervals. The expectation values and mean 
values are approximatively the same level.  
 



 

      
Figure 6. Pl/Bel function of IRP output with (unified) aggregated 
Dempster -Shafer representation 
 
The probability that IRP exceeds the threshold (1E-6) lies in 
the interval [0.000, 0.278] which contains also those of 
previous probabilistic cases. This means that in worst case we 
have 27.8% chance that the basic event (failure on demand of 
a turbine driven pump) is considered as a precursor event 
while in the best case, this event is considered as a non 
precursor event. Since the output results have been taken into 
account the uncertainty associated with the unjustified 
assumption of log-normal distribution and the uncertainty due 
to the ambiguous interpretations of the point estimate, these 
results can be surely employed in the  final decision making 
process.    

VII. CONCLUSIONS AND PERSPECTIVES 
In this paper, we have shown that two different interpretations 
of point estimate for input parameter may have a great impact 
on decision making in PRA application.  Moreover, since the 
use of a log-normal distribution is not properly justified, it 
would be better not to make the assumption of a single 
probabilistic distribution. The Dempster-Shafer theory is 
studied as an alternative approach to characterize the 
parameter uncertainty in a more appropriate manner. The so-
called unified Dempster-Shafer representation is proposed in 
this paper as an attractive way which allows us to deal with 
current issues due to the unjustified assumption on the log- 
normal and the ambiguous interpretations of point estimate 
value. A practical example is used to illustrate the use of this 
representation in PRA model. The results have shown that 
even though the output results with this unified Dempster-
Shafer representation seems to be more conservative in 
comparison with the probabilistic approach, these results can 
be surely used  for further decision making because it allows 
decision makers to take into account the parameter uncertainty 
in a proper way and to have further information about the final 
results in the best case and worst case without having to bet on 
the form of a single probabilistic distribution.  
 
However, since the Dempster-Shafer approach has just been 
recently studied in probabilistic risk assessment, the use of 
this approach must be considered in further study and needs a 
review of PRA experts’ opinions to be operational. Another 
problem which needs to be noticed is that the final results 
given in term of intervals in the DST are not well known for 
decision makers, which makes the decision process more 
difficult. These aspects will be considered in further works.   
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